Skip to main content

Checkpoint/Rollback vs Causally-Consistent Reversibility

  • Conference paper
  • First Online:
Reversible Computation (RC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11106))

Included in the following conference series:

Abstract

This paper analyzes the relationship between a distributed checkpoint/rollback scheme based on causal logging, called Manetho, and a reversible concurrent model of computation, based on the \(\pi \)-calculus with imperative rollback developed by Lanese et al. in [14]. We show a rather tight relationship between rollback based on causal logging as performed in Manetho and the rollback algorithm underlying the calculus in [14]. Our main result is that the latter can faithfully simulate Manetho, where the notion of simulation we use is that of weak barbed simulation, and that the converse only holds if possible rollbacks in are restricted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The description of the Manetho protocol differs slightly between the publication [8] and Elnozahy’s PhD thesis [6]. In particular, the latter involves a coordinating checkpointing scheme, which is not the case in the former. For the sake of simplicity, in this paper we follow the description in [8]. Checkpoint coordination in any case is not necessary for the correct operation of the recovery process in a causal logging checkpoint/rollback scheme. In [6] it is essentially used to simplify the garbage collection of recovery information.

  2. 2.

    In particular: \(X\{^Y/_X\}\{^Z/_Y\} = Z\) and \(X\{^{Y,Z}/_{X,Y}\} = Y\).

  3. 3.

    For simplicity, we let this choice be non-deterministic, but we could easily extend the syntax of \(\text{ lr- }\pi {}\) to accommodate e.g. imperative rollback instructions as in [14].

References

  1. Aggarwal, D., Kiehn, A.: Analyzing mutable checkpointing via invariants. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 176–190. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24644-4_12

    Chapter  Google Scholar 

  2. Cao, G., Singhal, M.: Checkpointing with mutable checkpoints. Theor. Comput. Sci. 290(2), 1127–1148 (2003)

    Article  MathSciNet  Google Scholar 

  3. Chothia, T., Duggan, D.: Abstractions for fault-tolerant global computing. Theor. Comput. Sci. 322(3), 567–613 (2004)

    Article  MathSciNet  Google Scholar 

  4. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible p-calculus. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society (2013)

    Google Scholar 

  5. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19

    Chapter  Google Scholar 

  6. Elnozahy, E.N.: Manetho: fault-tolerance in distributed systems using rollback-recovery and process replication. Ph.D. thesis, Rice University, TX, USA (1993)

    Google Scholar 

  7. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)

    Article  Google Scholar 

  8. Elnozahy, E.N., Zwaenepoel, W.: Manetho: transparent rollback-recovery with low overhead, limited rollback and fast output commit. IEEE Trans. Comput. 41(5), 526–531 (1992)

    Article  Google Scholar 

  9. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally consistent distributed state in unreliable environments. In: 32nd ACM Symposium on the Principles of Programming Languages (POPL). ACM (2005)

    Google Scholar 

  10. Giachino, E., Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent rollback in a tuple-based language. J. Log. Algebr. Methods Program. 88, 99–120 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hélary, J.M., Netzer, R.H.B., Raynal, M.: Consistency issues in distributed checkpoints. IEEE Trans. Softw. Eng. 25(2), 274–281 (1999)

    Article  Google Scholar 

  12. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_21

    Chapter  Google Scholar 

  13. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33

    Chapter  Google Scholar 

  14. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_20

    Chapter  Google Scholar 

  15. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)

    Article  MathSciNet  Google Scholar 

  16. Leeman, G.B.: A formal approach to undo operations in programming languages. ACM Trans. Program. Lang. Syst. 8(1), 50–87 (1986)

    Article  Google Scholar 

  17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_114

    Chapter  Google Scholar 

  18. Nishida, N., Palacios, A., Vidal, G.: A reversible semantics for Erlang. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 259–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_15

    Chapter  Google Scholar 

  19. Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Cluster Comput. 17(2), 303–313 (2014)

    Article  Google Scholar 

  20. Vassor, M., Stefani, J.B.: A comparison between stable causal log (Manetho) and a modified roll-pi calculus (2018). https://team.inria.fr/spades/long-version-checkpoint-vs-reversibility/

  21. Ziarek, L., Jagannathan, S.: Lightweight checkpointing for concurrent ML. J. Funct. Program. 20(2), 137–173 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Vassor or Jean-Bernard Stefani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vassor, M., Stefani, JB. (2018). Checkpoint/Rollback vs Causally-Consistent Reversibility. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99498-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99497-0

  • Online ISBN: 978-3-319-99498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics