Skip to main content

A Survey of Millimeter Wave (mm-Wave) Communications for 5G: Channel Measurement Below and Above 6 GHz

  • Conference paper
  • First Online:
Recent Trends in Data Science and Soft Computing (IRICT 2018)

Abstract

As the demand for higher speed data transmissions continues to increase exponentially beyond the speed-limit of the fourth generation (4G) wireless networks due to the rapid spectrum depletion of the microwave frequency bands below 6 GHz, it has become quite evident that the existing wireless communication systems will eventually be constrained from meeting the huge throughput requirements for various emerging applications beyond 4G wireless networks. In order to sustain the future market dominance of wireless communications, the narrowness of wireless bandwidths in the existing systems, which has become a key issue for the upcoming wireless systems, needs to be addressed by looking beyond the traditional microwave spectrum domain through the exploitation of the huge bandwidths available in the millimeter wave bands. In this work, we have conducted the review for a series of measurements at various microwave bands, below 6 GHz and above, to study the behavior of ultra-wideband (UWB) channels, typically in different indoor and outdoor environments. These measurements have been used to gain a useful insight into the path loss and time dispersion parametric behaviors of the 5G channel and to investigate the channel characterization of the UWB signals within spatially restricted locations. Moreover, these measurements have been used to evaluate the newest channel model and channel prediction which have proposed for 5G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)

    Article  Google Scholar 

  2. Molisch, A.F.: Ultra-wide-band propagation channels. Proc. IEEE 97, 353–371 (2009)

    Article  Google Scholar 

  3. Andrews, J.G., Buzzi, S., Choi, W., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)

    Article  Google Scholar 

  4. UMTS Forum: Mobile traffic forecasts 2010–2020. UMTS Forum Rep. 44 (2011)

    Google Scholar 

  5. Akdeniz, M.R., Liu, Y., Samimi, M.K., et al.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32, 1164–1179 (2014)

    Article  Google Scholar 

  6. Liu, D., Wang, L., Chen, Y., et al.: User association in 5G networks: a survey and an outlook. IEEE Commun. Surv. Tutor. 18, 1018–1044 (2016)

    Article  Google Scholar 

  7. Akyildiz, I.F., Gutierrez-Estevez, D.M., Balakrishnan, R., Chavarria-Reyes, E.: LTE-advanced and the evolution to beyond 4G (B4G) systems. Phys. Commun. 10, 31–60 (2014)

    Article  Google Scholar 

  8. Talwar, S., Choudhury, D., Dimou, K., et al.: Enabling technologies and architectures for 5G wireless. In: 2014 IEEE MTT-S International Microwave Symposium, pp. 1–4. IEEE (2014)

    Google Scholar 

  9. Morant, M., Prat, J., Llorente, R.: Radio-over-fiber optical polarization-multiplexed networks for 3GPP wireless carrier-aggregated MIMO provision. J. Light Technol. 8724, 1 (2014)

    Google Scholar 

  10. Wang, P., Li, Y., Song, L., Vucetic, B.: Multi-gigabit millimeter wave wireless communications for 5G: from fixed access to cellular networks. IEEE Commun. Mag. 53, 168–178 (2015)

    Article  Google Scholar 

  11. Ofcom: Spectrum above 6 GHz for future mobile communications (2015). http://stakeholders.ofcom.org.uk/binaries/consultations/above-6ghz/summary/spectrumabove6GHzCFI.pdf

  12. ITU: The technical feasibility of IMT in the bands above 6 GHz (2015). https://www.itu.int/pub/R-REP-M.2376

  13. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49, 101–107 (2011)

    Article  Google Scholar 

  14. Santos, T., Karedal, J., Almers, P., et al.: Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Trans. Wirel. Commun. 9, 282–290 (2010)

    Article  Google Scholar 

  15. Rappaport, T.S., Heath, R.W., Daniels, R.C., Murdock, J.N.: Millimeter wave wireless communications, 1st edn. Prentice Hall, Upper Saddle River (2015)

    Google Scholar 

  16. Dezfooliyan, A., Weiner, A.M.: Experimental investigation of UWB impulse response and time reversal technique up to 12 GHz: omnidirectional and directional antennas. IEEE Trans. Antennas Propag. 60, 3407–3415 (2012)

    Article  Google Scholar 

  17. Muqaibel, A., Safaai-Jazi, A., Attiya, A., et al.: Path-loss and time dispersion parameters for indoor UWB propagation. IEEE Trans. Wirel. Commun. 5, 550–559 (2006)

    Article  Google Scholar 

  18. Oudin, H., Wen, Z.: mmWave MIMO channel sounding for 5G: technical challenges and prototype system. In: 1st International Conference on 5G for Ubiquitous Connectivity. ICST, pp. 192–197 (2014)

    Google Scholar 

  19. Al-Samman, A.M., Rahman, T.A., Azmi, M.H., et al.: Statistical modelling and characterization of experimental mm-wave indoor channels for future 5G wireless communication networks. PLoS ONE 11, e0163034 (2016)

    Article  Google Scholar 

  20. Rappaport, T.S., Mayzus, R., Azar, Y., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  21. Hao, Xu, Rappaport, T.S., Boyle, R.J., Schaffner, J.H.: Measurements and models for 38-GHz point-to-multipoint radiowave propagation. IEEE J. Sel. Areas Commun. 18, 310–321 (2000)

    Article  Google Scholar 

  22. Al-Samman, A.M., Rahman, T.A., Hadri, M., et al.: Experimental UWB indoor channel characterization in stationary and mobility scheme. Measurement 111, 333–339 (2017)

    Article  Google Scholar 

  23. Hashemi, H.: Indoor radio propagation channel. Proc. IEEE 81, 943–968 (1993)

    Article  Google Scholar 

  24. Abouraddy, A.F., Elnoubi, S.M.: Statistical modeling of the indoor radio channel at 10 GHz through propagation measurements Part I: narrow-band measurements and modeling. IEEE Trans. Veh. Technol. 49, 1491–1507 (2000)

    Article  Google Scholar 

  25. Athanasiadou, G.E., Nix, A.R.: A novel 3-D indoor ray-tracing propagation model: the path generator and evaluation of narrow-band and wide-band predictions. IEEE Trans. Veh. Technol. 49, 1152–1168 (2000)

    Article  Google Scholar 

  26. Greenstein, L.J., Ghassemzadeh, S.S., Erceg, V., Michelson, D.G.: Ricean K-factors in narrow-band fixed wireless channels: theory, experiments, and statistical models. IEEE Trans. Veh. Technol. 58, 4000–4012 (2009)

    Article  Google Scholar 

  27. Yu, K., Bengtsson, M., Ottersten, B., et al.: Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Trans. Veh. Technol. 53, 655–665 (2004)

    Article  Google Scholar 

  28. Joshi, G.G., Dietrich, C.B., Anderson, C.R., et al.: Near-ground channel measurements over line-of-sight and forested paths. IEE Proc. Microw. Antennas Propag. 152, 589 (2005)

    Article  Google Scholar 

  29. Kivinen, J., Zhao, X., Vainikainen, P.: Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Trans. Antennas Propag. 49, 1192–1203 (2001)

    Article  Google Scholar 

  30. Liang, J., Liang, Q.: Outdoor propagation channel modeling in foliage environment. IEEE Trans. Veh. Technol. 59, 2243–2252 (2010)

    Article  Google Scholar 

  31. Win, M.Z., Scholtz, R.A., Barnes, M.A.: Ultra-wide bandwidth signal propagation for indoor wireless communications. In: Proceedings of ICC 1997—International Conference on Communications. IEEE, pp. 56–60 (1997)

    Google Scholar 

  32. Win, M.Z., Ramirez-Mireles, F., Scholtz, R.A., Barnes, M.A.: Ultra-wide bandwidth (UWB) signal propagation for outdoor wireless communications. In: 1997 IEEE 47th Vehicular Technology Conference Technology in Motion. IEEE, pp. 251–255 (1997)

    Google Scholar 

  33. Chuan, C.L., Chin, F.: UWB Channel Characterization in Indoor Office Environments. In: IEEE P802.15 Wireless Personal Area Networks. IEEE P802, pp. 1–10 (2004)

    Google Scholar 

  34. Ciccognani, W., Durantini, A., Cassioli, D.: Time domain propagation measurements of the UWB indoor channel using PN-sequence in the FCC-compliant band 3.6–6 GHz. IEEE Trans. Antennas Propag. 53, 1542–1549 (2005)

    Article  Google Scholar 

  35. Lee, J.-Y.: UWB Channel modeling in roadway and indoor parking environments. IEEE Trans. Veh. Technol. 59, 3171–3180 (2010)

    Article  Google Scholar 

  36. Ghassemzadeh, S.S., Jana, R., Rice, C.W., et al.: Measurement and modeling of an ultra-wide bandwidth indoor channel. IEEE Trans. Commun. 52, 1786–1796 (2004)

    Article  Google Scholar 

  37. Ghassemzadeh, S.S., Greenstein, L.J., Sveinsson, T., et al.: UWB delay profile models for residential and commercial indoor environments. IEEE Trans. Veh. Technol. 54, 1235–1244 (2005)

    Article  Google Scholar 

  38. Keignart, J., Daniele, N.: Subnanosecond UWB channel sounding in frequency and temporal domain. In: 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), pp. 25–30. IEEE (2002)

    Google Scholar 

  39. Wang, Y., Lu, W., Zhu, H.: An empirical path-loss model for wireless channels in indoor short-range office environment. Int. J. Antennas Propag. 2012, 1–7 (2012)

    Google Scholar 

  40. Al-Samman, A.M., Rahman, T.A.: Experimental characterization of multipath channels for ultra-wideband systems in indoor environment based on time dispersion parameters. Wirel. Pers. Commun. 95, 1713–1724 (2016)

    Article  Google Scholar 

  41. Anderson, C.R., Volos, H.I., Buehrer, R.M.: Characterization of low-antenna ultrawideband propagation in a forest environment. IEEE Trans. Veh. Technol. 62, 2878–2895 (2013)

    Article  Google Scholar 

  42. Di Renzo, M., Graziosi, F., Minutolo, R., et al.: The ultra-wide bandwidth outdoor channel: from measurement campaign to statistical modelling. Mob. Netw. Appl. 11, 451–467 (2006)

    Article  Google Scholar 

  43. Di Francesco, A., Di Renzo, M., Feliziani, M., et al.: Sounding and modelling of the ultra wide-band channel in outdoor scenarios. In: 2nd International Workshop on Networks with Ultra Wide Band Work, Ultra Wide Band Sensors Networks, Network with UWB 2005, pp. 20–24. IEEE (2005)

    Google Scholar 

  44. Molisch, A.F., Balakrishnan, K., Cassioli, D., et al.: A comprehensive model for ultrawideband propagation channels. In: Global Telecommunications Conference 2005, GLOBECOM 2005, vol. 6, p. 3653. IEEE (2005)

    Google Scholar 

  45. Al-Samman, A.M., Rahman, T.A., Nunoo, S., et al.: Experimental characterization and analysis for ultra wideband outdoor channel. Wirel. Pers. Commun. 83, 3103–3118 (2015)

    Article  Google Scholar 

  46. Al-Samman, A.M., Azmi, M.H., Rahman, T.A.: Window-based channel impulse response prediction for time-varying ultra-wideband channels. PLoS ONE 11, e0164944 (2016)

    Article  Google Scholar 

  47. Ko, J., Cho, Y.-J., Hur, S., et al.: Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Trans. Wirel. Commun. 2, 1 (2017)

    Google Scholar 

  48. Molisch, A.F., Cassioli, D., Emami, S., et al.: A comprehensive standardized model for ultrawideband propagation channels. IEEE Trans. Antennas Propag. 54, 3151–3166 (2006)

    Article  Google Scholar 

  49. Richardson, P.C., Xiang, W., Stark, W.: Modeling of ultra-wideband channels within vehicles. IEEE J. Sel. Areas Commun. 24, 906–912 (2006)

    Article  Google Scholar 

  50. Rappaport, T.S., MacCartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. 63, 3029–3056 (2015)

    Article  Google Scholar 

  51. Niu, Y., Li, Y., Jin, D., et al.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw. 21, 2657–2676 (2015)

    Article  Google Scholar 

  52. Elrefaie, A.F., Shakouri, M.: Propagation measurements at 28 GHz for coverage evaluation of local multipoint distribution service. In: Proceedings of 1997 Wireless Communications Conference, pp. 12–17. IEEE (1997)

    Google Scholar 

  53. Xu, H., Rappaport, T.S., Boyle, R.J., Schaffner, J.H.: 38 GHz wideband point-to-multipoint radio wave propagation study for a campus environment. In: 1999 IEEE 49th Vehicular Technology Conference (Cat. No. 99CH36363), pp. 1575–1579. IEEE (1999)

    Google Scholar 

  54. Violette, E.J., Espeland, R.H., DeBolt, R.O., Schwering, F.K.: Millimeter-wave propagation at street level in an urban environment. IEEE Trans. Geosci. Remote Sens. 26, 368–380 (1988)

    Article  Google Scholar 

  55. Wang, F., Sarabandi, K.: An enhanced millimeter-wave foliage propagation model. IEEE Trans. Antennas Propag. 53, 2138–2145 (2005)

    Article  Google Scholar 

  56. Schwering, F.K., Violette, E.J., Espeland, R.H.: Millimeter-wave propagation in vegetation: experiments and theory. IEEE Trans. Geosci. Remote Sens. 26, 355–367 (1988)

    Article  Google Scholar 

  57. Hao, Xu, Kukshya, V., Rappaport, T.S.: Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 20, 620–630 (2002)

    Article  Google Scholar 

  58. Anderson, C.R., Rappaport, T.S.: In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wirel. Commun. 3, 922–928 (2004)

    Article  Google Scholar 

  59. Peter, W.K.M., Keusgen, W., Felbecker, R.: Measurement and ray-tracing simulation of the 60 GHz indoor broadband channel: model accuracy and parameterization. IET Semin. Dig. 432–432 (2007)

    Google Scholar 

  60. Lovnes, G., Reis, J.J., Raekken, R.H.: Channel sounding measurements at 59 GHz in city streets. In: IEEE International Symposium on Personal, Indoor and Mobile Radio Communication. Wireless Networks—Catch. Mob. Futur., pp. 496–500. IOS Press (1994)

    Google Scholar 

  61. Thomas, H.J., Cole, R.S., Siqueira, G.L.: An Experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment. IEEE Trans. Veh. Technol. 43, 140–146 (1994)

    Article  Google Scholar 

  62. Ben-Dor, E., Rappaport, T.S., Yijun, Q., Lauffenburger, S.J.: Millimeter-wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In: 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011, pp. 1–6. IEEE (2011)

    Google Scholar 

  63. Kyrö, M., Kolmonen, V.M., Vainikainen, P.: Experimental propagation channel characterization of mm-wave radio links in urban scenarios. IEEE Antennas Wirel. Propag. Lett. 11, 865–868 (2012)

    Article  Google Scholar 

  64. Kyrö, M., Ranvier, S., Kolmonen, V.-M., et al.: Long range wideband channel measurements at 81–86 GHz frequency range. In: 2010 Proceedings of Fourth European Conference on Antennas and Propagation (2010)

    Google Scholar 

  65. Chen, Y., De, S., Kernchen, R., Moessner, K.: Device discovery in future service platforms through SIP. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE (2012)

    Google Scholar 

  66. Rajagopal, S., Abu-Surra, S., Malmirchegini, M.: Channel feasibility for outdoor non-line-of-sight mmWave mobile communication. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–6. IEEE (2012)

    Google Scholar 

  67. Rappaport, T.S., Ben-Dor, E., Murdock, J.N., Qiao, Y.: 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In: IEEE International Conference on Communications, pp. 4568–4573. IEEE (2012)

    Google Scholar 

  68. Samsung Electronics Millimeter Waves May Be the Future of 5G Phones. http://spectrum.ieee.org/telecom/wireless/millimeter-waves-may-be-the-future-of-5g-phones

  69. Al-Samman, A.M., Rahman, T.A., Azmi, M.H., Hindia, M.N.: Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications. AEU Int. J. Electron. Commun. 70, 1515–1521 (2016)

    Article  Google Scholar 

  70. Deng, S., Samimi, M.K., Rappaport, T.S.: 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In: 2015 IEEE International Conference on Communications Work, pp. 1244–1250. IEEE (2015)

    Google Scholar 

  71. MacCartney, G.R., Deng, S., Rappaport, T.S.: Indoor office plan environment and layout-based mmWave path loss models for 28 GHz and 73 GHz. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–6. IEEE (2016)

    Google Scholar 

  72. Nie, S., MacCartney, G.R., Sun, S., Rappaport, T.S.: 72 GHz millimeter wave indoor measurements for wireless and backhaul communications. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2429–2433. IEEE (2013)

    Google Scholar 

  73. Maccartney, G.R., Rappaport, T.S., Sun, S., Deng, S.: Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access 3, 2388–2424 (2015)

    Article  Google Scholar 

  74. Zhang, N., Yin, X., Lu, S.X., et al: Measurement-based angular characterization for 72 GHz propagation channels in indoor environments. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 370–376. IEEE (2014)

    Google Scholar 

  75. Haneda, K., Jarvelainen, J., Karttunen, A., et al Indoor short-range radio propagation measurements at 60 and 70 GHz. In: 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 634–638. IEEE (2014)

    Google Scholar 

  76. Hur, S., Cho, Y.-J., Lee, J., et al: Synchronous channel sounder using horn antenna and indoor measurements on 28 GHz. In: 2014 IEEE International Black Sea Conference on Communications and Networking, pp. 83–87. IEEE (2014)

    Google Scholar 

  77. Al-Samman AM, Rahman TA, Azmi MH: Indoor corridor wideband radio propagation measurements and channel models for 5G millimeter-wave wireless communications at 19 GHz, 28 GHz and 38 GHz Bands. Wirel. Commun. Mobile Comput. 2018, 12 (2018)

    Google Scholar 

  78. Oyie, N.O., Afullo, T.J.O.: Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor. IEEE Access 6, 17205–17214 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank the Research Management Centre (RMC) at Universiti Teknologi Malaysia for funding this work under Grant Number Q.J130000.21A2.03E69. Also, the authors would like to acknowledge UTM research Grant (Vot 4J218), Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Al-samman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-samman, A.M., Azmi, M.H., Rahman, T.A. (2019). A Survey of Millimeter Wave (mm-Wave) Communications for 5G: Channel Measurement Below and Above 6 GHz. In: Saeed, F., Gazem, N., Mohammed, F., Busalim, A. (eds) Recent Trends in Data Science and Soft Computing. IRICT 2018. Advances in Intelligent Systems and Computing, vol 843. Springer, Cham. https://doi.org/10.1007/978-3-319-99007-1_43

Download citation

Publish with us

Policies and ethics