Skip to main content

ALDH1L1 and ALDH1L2 Folate Regulatory Enzymes in Cancer

  • Conference paper
  • First Online:
Alcohol and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1032))

Abstract

Epidemiological studies implicate excess ethanol ingestion as a risk factor for several cancers and support the concept of a synergistic effect of chronic alcohol consumption and folate deficiency on carcinogenesis. Alcohol consumption affects folate-related genes and enzymes including two major folate-metabolizing enzymes, ALDH1L1 and ALDH1L2. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is a regulatory enzyme in folate metabolism that controls the overall flux of one-carbon groups in folate-dependent biosynthetic pathways. It is strongly and ubiquitously down-regulated in malignant tumors via promoter methylation, and recent studies underscored this enzyme as a candidate tumor suppressor and potential marker of aggressive cancers. A related enzyme, ALDH1L2, is the mitochondrial homolog of ALDH1L1 encoded by a separate gene. In contrast to its cytosolic counterpart, ALDH1L2 is expressed in malignant tumors and cancer cell lines and was implicated in metastasis regulation. This review discusses the link between folate and cancer, modifying effects of alcohol consumption on folate-associated carcinogenesis, and putative roles of ALDH1L1 and ALDH1L2 in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason JB, Choi SW (2005) Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35(3):235–241. https://doi.org/10.1016/j.alcohol.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  2. Medici V, Halsted CH (2013) Folate, alcohol, and liver disease. Mol Nutr Food Res 57(4):596–606. https://doi.org/10.1002/mnfr.201200077

    Article  CAS  PubMed  Google Scholar 

  3. Tibbetts AS, Appling DR (2010) Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81. https://doi.org/10.1146/annurev.nutr.012809.104810

    Article  CAS  PubMed  Google Scholar 

  4. Strickland KC, Krupenko NI, Krupenko SA (2013) Molecular mechanisms underlying the potentially adverse effects of folate. Clin Chem Lab Med 51(3):607–616. https://doi.org/10.1515/cclm-2012-0561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brosnan ME, MacMillan L, Stevens JR, Brosnan JT (2015) Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? Biochem J 472(2):135–146. https://doi.org/10.1042/BJ20150837

    Article  CAS  PubMed  Google Scholar 

  6. Tucker EJ, Hershman SG, Kohrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, Rajbhandary UL, Thorburn DR, Mootha VK (2011) Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 14(3):428–434. https://doi.org/10.1016/j.cmet.2011.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 3(1):21–38. https://doi.org/10.3945/an.111.000992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jhaveri MS, Wagner C, Trepel JB (2001) Impact of extracellular folate levels on global gene expression. Mol Pharmacol 60(6):1288–1295

    Article  CAS  PubMed  Google Scholar 

  9. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 94(7):3290–3295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130(2):129–132

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325(5939):435–439. https://doi.org/10.1126/science.1173288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302. https://doi.org/10.1038/nature13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Shah S, Fan J, Park JO, Wellen KE, Rabinowitz JD (2016) Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat Chem Biol 12(5):345–352. https://doi.org/10.1038/nchembio.2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336(6084):1040–1044. https://doi.org/10.1126/science.1218595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272. https://doi.org/10.1016/j.cell.2011.11.050

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. https://doi.org/10.1038/ncomms4128

    Article  CAS  PubMed  Google Scholar 

  17. Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13(8):572–583. https://doi.org/10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–191. https://doi.org/10.1038/nature15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, Kang Y, Rabinowitz JD (2016) Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. https://doi.org/10.1016/j.cmet.2016.04.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mason JB, Tang SY (2016) Folate status and colorectal cancer risk: a 2016 update. Mol Asp Med 53:73–79. https://doi.org/10.1016/j.mam.2016.11.010

    Article  CAS  Google Scholar 

  21. Miller JW, Ulrich CM (2013) Folic acid and cancer–where are we today? Lancet 381(9871):974–976. https://doi.org/10.1016/S0140-6736(13)60110-5

    Article  PubMed  Google Scholar 

  22. Boyles AL, Yetley EA, Thayer KA, Coates PM (2016) Safe use of high intakes of folic acid: research challenges and paths forward. Nutr Rev 74(7):469–474. https://doi.org/10.1093/nutrit/nuw015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC (2013) Alcohol, DNA methylation, and cancer. Alcohol Res 35(1):25–35

    PubMed  PubMed Central  Google Scholar 

  24. Bailey LB (2003) Folate, methyl-related nutrients, alcohol, and the MTHFR 677C–>T polymorphism affect cancer risk: intake recommendations. J Nutr 133(11 Suppl 1):3748S–3753S

    Article  CAS  PubMed  Google Scholar 

  25. Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, Willett WC (1995) Alcohol, low-methionine--low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 87(4):265–273

    Article  CAS  PubMed  Google Scholar 

  26. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24(3):562–579. https://doi.org/10.1093/humrep/den439

    Article  CAS  PubMed  Google Scholar 

  27. Shen R, Liu H, Wen J, Liu Z, Wang LE, Wang Q, Tan D, Ajani JA, Wei Q (2015) Genetic polymorphisms in the microRNA binding-sites of the thymidylate synthase gene predict risk and survival in gastric cancer. Mol Carcinog 54(9):880–888. https://doi.org/10.1002/mc.22160

    Article  CAS  PubMed  Google Scholar 

  28. Svensson T, Yamaji T, Budhathoki S, Hidaka A, Iwasaki M, Sawada N, Inoue M, Sasazuki S, Shimazu T, Tsugane S (2016) Alcohol consumption, genetic variants in the alcohol- and folate metabolic pathways and colorectal cancer risk: the JPHC study. Sci Rep 6:36607. https://doi.org/10.1038/srep36607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Persson EC, Schwartz LM, Park Y, Trabert B, Hollenbeck AR, Graubard BI, Freedman ND, McGlynn KA (2013) Alcohol consumption, folate intake, hepatocellular carcinoma, and liver disease mortality. Cancer Epidemiol Biomark Prev 22(3):415–421. https://doi.org/10.1158/1055-9965.EPI-12-1169

    Article  CAS  Google Scholar 

  30. Islam T, Ito H, Sueta A, Hosono S, Hirose K, Watanabe M, Iwata H, Tajima K, Tanaka H, Matsuo K (2013) Alcohol and dietary folate intake and the risk of breast cancer: a case-control study in Japan. Eur J Cancer Prev 22(4):358–366. https://doi.org/10.1097/CEJ.0b013e32835b6a60

    Article  CAS  PubMed  Google Scholar 

  31. Nan H, Lee JE, Rimm EB, Fuchs CS, Giovannucci EL, Cho E (2013) Prospective study of alcohol consumption and the risk of colorectal cancer before and after folic acid fortification in the United States. Ann Epidemiol 23(9):558–563. https://doi.org/10.1016/j.annepidem.2013.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suzuki T, Matsuo K, Sawaki A, Mizuno N, Hiraki A, Kawase T, Watanabe M, Nakamura T, Yamao K, Tajima K, Tanaka H (2008) Alcohol drinking and one-carbon metabolism-related gene polymorphisms on pancreatic cancer risk. Cancer Epidemiol Biomark Prev 17(10):2742–2747. https://doi.org/10.1158/1055-9965.EPI-08-0470

    Article  CAS  Google Scholar 

  33. Matejcic M, de Batlle J, Ricci C, Biessy C, Perrier F, Huybrechts I, Weiderpass E, Ruault BM, Cadeau C, His M, Cox DG, Boeing H, Fortner RT, Kaaks R, Lagiou P, Trichopoulou A, Benetou V, Tumino R, Panico S, Sieri S, Palli D, Ricceri F, Bueno-De-Mesquita HB, Skeie G, Amiano P, Sanchez MJ, Chirlaque MD, Barricarte A, Quiros JR, Buckland G, van Gils CH, Peeters PH, Key TJ, Riboli E, Gylling B, Zeleniuch-Jacquotte A, Gunter MJ, Romieu I, Chajes V (2016) Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort. Int J Cancer 140(6):1246–1259. https://doi.org/10.1002/ijc.30536

    Article  CAS  Google Scholar 

  34. Schouten LJ, Deckers IA, van den Brandt PA, Baldewijns MM, van Engeland M (2016) Alcohol and dietary folate intake and promoter CpG Island methylation in clear-cell renal cell Cancer. Nutr Cancer 68(7):1097–1107. https://doi.org/10.1080/01635581.2016.1187283

    Article  CAS  PubMed  Google Scholar 

  35. Goldman ID, Chattopadhyay S, Zhao R, Moran R (2010) The antifolates: evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Curr Opin Investig Drugs 11(12):1409–1423

    CAS  PubMed  Google Scholar 

  36. Luo WP, Li B, Lin FY, Yan B, Du YF, Mo XF, Wang L, Zhang CX (2016) Joint effects of folate intake and one-carbon-metabolizing genetic polymorphisms on breast cancer risk: a case-control study in China. Sci Rep 6:29555. https://doi.org/10.1038/srep29555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim W, Woo HD, Lee J, Choi IJ, Kim YW, Sung J, Kim J (2016) Dietary folate, one-carbon metabolism-related genes, and gastric cancer risk in Korea. Mol Nutr Food Res 60(2):337–345. https://doi.org/10.1002/mnfr.201500384

    Article  CAS  PubMed  Google Scholar 

  38. Wang LL, Li Y, Zhou SF (2009) Prediction of deleterious non-synonymous single nucleotide polymorphisms of genes related to ethanol-induced toxicity. Toxicol Lett 187(2):99–114. https://doi.org/10.1016/j.toxlet.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  39. Villanueva JA, Halsted CH (2004) Hepatic transmethylation reactions in micropigs with alcoholic liver disease. Hepatology 39(5):1303–1310. https://doi.org/10.1002/hep.20168

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida Y, Komatsu M, Ozeki A, Nango R, Tsukamoto I (1997) Ethanol represses thymidylate synthase and thymidine kinase at mRNA level in regenerating rat liver after partial hepatectomy. Biochim Biophys Acta 1336(2):180–186

    Article  CAS  PubMed  Google Scholar 

  41. Krupenko SA (2009) FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 178(1–3):84–93

    Article  CAS  PubMed  Google Scholar 

  42. Cook RJ, Wagner C (1982) Purification and partial characterization of rat liver folate binding protein: cytosol I. Biochemistry 21(18):4427–4434

    Article  CAS  PubMed  Google Scholar 

  43. Kisliuk RL (1999) Folate biochemistry in relation to antifolate selectivity. In: Jackman AL (ed) Antifolate drugs in cancer therapy. Humana Press, Totowa, pp 13–36

    Chapter  Google Scholar 

  44. Krupenko SA, Oleinik NV (2002) 10-formyltetrahydrofolate dehydrogenase, one of the major folate enzymes, is down-regulated in tumor tissues and possesses suppressor effects on cancer cells. Cell Growth Differ 13(5):227–236

    CAS  PubMed  Google Scholar 

  45. Anguera MC, Field MS, Perry C, Ghandour H, Chiang EP, Selhub J, Shane B, Stover PJ (2006) Regulation of folate-mediated one-carbon metabolism by 10-Formyltetrahydrofolate dehydrogenase. J Biol Chem 281(27):18335–18342

    Article  CAS  PubMed  Google Scholar 

  46. Champion KM, Cook RJ, Tollaksen SL, Giometti CS (1994) Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc Natl Acad Sci USA 91(24):11338–11342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wagner C (1995) Biochemical role of folate in cellular metabolism. In: Bailey LB (ed) Folate in health and disease. Marcel Dekker, Inc., New York, pp 23–42

    Google Scholar 

  48. Dharuri H, Henneman P, Demirkan A, van Klinken JB, Mook-Kanamori DO, Wang-Sattler R, Gieger C, Adamski J, Hettne K, Roos M, Suhre K, Van Duijn CM, Consortia E, van Dijk KW, Hoen PA (2013) Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles. BMC Genomics 14:865. https://doi.org/10.1186/1471-2164-14-865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oleinik NV, Krupenko NI, Priest DG, Krupenko SA (2005) Cancer cells activate p53 in response to 10-formyltetrahydrofolate dehydrogenase expression. Biochem J 391(Pt 3):503–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV, Krupenko SA (2010) ALDH1L2 is the mitochondrial homolog of 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 285(30):23056–23063. 10.74/jbc.M110.128843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Anthony TE, Heintz N (2007) The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J Comp Neurol 500(2):368–383

    Article  CAS  PubMed  Google Scholar 

  52. Epperson LE, Dahl TA, Martin SL (2004) Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel. Mol Cell Proteomics 3(9):920–933

    Article  CAS  PubMed  Google Scholar 

  53. Leonard JF, Courcol M, Mariet C, Charbonnier A, Boitier E, Duchesne M, Parker F, Genet B, Supatto F, Roberts R, Gautier JC (2006) Proteomic characterization of the effects of clofibrate on protein expression in rat liver. Proteomics 6(6):1915–1933

    Article  CAS  PubMed  Google Scholar 

  54. Hsiao TH, Lin CJ, Chung YS, Lee GH, Kao TT, Chang WN, Chen BH, Hung JJ, Fu TF (2014) Ethanol-induced upregulation of 10-formyltetrahydrofolate dehydrogenase helps relieve ethanol-induced oxidative stress. Mol Cell Biol 34(3):498–509. https://doi.org/10.1128/MCB.01427-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oleinik NV, Krupenko NI, Krupenko SA (2011) Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2(2):130–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov GS, Pronina IV, Loginov VI, Kondratieva TT, Kazubskaya TP, Braga EA, Yenamandra SP, Ignatjev I, Ernberg I, Klein G, Lerman MI, Zabarovsky ER (2012) Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics 7(5):502–513. https://doi.org/10.4161/epi.19801

    Article  CAS  PubMed  Google Scholar 

  57. Senchenko VN, Kisseljova NP, Ivanova TA, Dmitriev AA, Krasnov GS, Kudryavtseva AV, Panasenko GV, Tsitrin EB, Lerman MI, Kisseljov FL, Kashuba VI, Zabarovsky ER (2013) Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer. Epigenetics 8(4):409–420. https://doi.org/10.4161/epi.24233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dmitriev AA, Rudenko EE, Kudryavtseva AV, Krasnov GS, Gordiyuk VV, Melnikova NV, Stakhovsky EO, Kononenko OA, Pavlova LS, Kondratieva TT, Alekseev BY, Braga EA, Senchenko VN, Kashuba VI (2014) Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed Res Int 2014:735292. https://doi.org/10.1155/2014/735292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blei T, Soukup ST, Schmalbach K, Pudenz M, Moller FJ, Egert B, Wortz N, Kurrat A, Muller D, Vollmer G, Gerhauser C, Lehmann L, Kulling SE, Diel P (2015) Dose-dependent effects of isoflavone exposure during early lifetime on the rat mammary gland: studies on estrogen sensitivity, isoflavone metabolism, and DNA methylation. Mol Nutr Food Res 59(2):270–283. https://doi.org/10.1002/mnfr.201400480

    Article  CAS  PubMed  Google Scholar 

  60. Song MA, Brasky TM, Marian C, Weng DY, Taslim C, Llanos AA, Dumitrescu RG, Liu Z, Mason JB, Spear SL, Kallakury BV, Freudenheim JL, Shields PG (2016) Genetic variation in one-carbon metabolism in relation to genome-wide DNA methylation in breast tissue from heathy women. Carcinogenesis 37:471–480. https://doi.org/10.1093/carcin/bgw030

    Article  CAS  PubMed  Google Scholar 

  61. Ghose S, Oleinik NV, Krupenko NI, Krupenko SA (2009) 10-formyltetrahydrofolate dehydrogenase-induced c-Jun-NH2-kinase pathways diverge at the c-Jun-NH2-kinase substrate level in cells with different p53 status. Mol Cancer Res 7(1):99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Oleinik NV, Krupenko NI, Krupenko SA (2007) Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26(51):7222–7230

    Article  CAS  PubMed  Google Scholar 

  63. Oleinik NV, Krupenko SA (2003) Ectopic expression of 10-formyltetrahydrofolate dehydrogenase in a549 cells induces g(1) cell cycle arrest and apoptosis. Mol Cancer Res 1(8):577–588

    CAS  PubMed  Google Scholar 

  64. Rodriguez FJ, Giannini C, Asmann YW, Sharma MK, Perry A, Tibbetts KM, Jenkins RB, Scheithauer BW, Anant S, Jenkins S, Eberhart CG, Sarkaria JN, Gutmann DH (2008) Gene expression profiling of NF-1-associated and sporadic pilocytic astrocytoma identifies aldehyde dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed candidate biomarker in aggressive subtypes. J Neuropathol Exp Neurol 67(12):1194–1204

    Article  CAS  PubMed  Google Scholar 

  65. Chen XQ, He JR, Wang HY (2011) Decreased expression of ALDH1L1 is associated with a poor prognosis in hepatocellular carcinoma. Med Oncol 29(3):1843–1849. https://doi.org/10.1007/s12032-011-0075-x

    Article  CAS  PubMed  Google Scholar 

  66. Hartomo TB, Van Huyen PT, Yamamoto N, Hirase S, Hasegawa D, Kosaka Y, Matsuo M, Hayakawa A, Takeshima Y, Iijima K, Nishio H, Nishimura N (2015) Involvement of aldehyde dehydrogenase 1A2 in the regulation of cancer stem cell properties in neuroblastoma. Int J Oncol 46(3):1089–1098. https://doi.org/10.3892/ijo.2014.2801

    Article  CAS  PubMed  Google Scholar 

  67. Wu S, Xue W, Huang X, Yu X, Luo M, Huang Y, Liu Y, Bi Z, Qiu X, Bai S (2015) Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol 36(4):2421–2426. https://doi.org/10.1007/s13277-014-2852-6

    Article  CAS  PubMed  Google Scholar 

  68. Shen JX, Liu J, Li GW, Huang YT, Wu HT (2016) Mining distinct aldehyde dehydrogenase 1 (ALDH1) isoenzymes in gastric cancer. Oncotarget 7(18):25340–25349. https://doi.org/10.18632/oncotarget.8294

    Article  PubMed  PubMed Central  Google Scholar 

  69. Darby IA, Vuillier-Devillers K, Pinault E, Sarrazy V, Lepreux S, Balabaud C, Bioulac-Sage P, Desmouliere A (2010) Proteomic analysis of differentially expressed proteins in peripheral cholangiocarcinoma. Cancer Microenviron 4(1):73–91. https://doi.org/10.1007/s12307-010-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Feigelson HS, Thun MJ, Calle EE (2007) Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence. Cancer Epidemiol Biomark Prev 16(6):1140–1147. https://doi.org/10.1158/1055-9965.EPI-06-1037

    Article  CAS  Google Scholar 

  71. Zhang H, Liu C, Han YC, Ma Z, Zhang H, Ma Y, Liu X (2015) Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case-control study. Tumour Biol 36(2):997–1002. https://doi.org/10.1007/s13277-014-2725-z

    Article  CAS  PubMed  Google Scholar 

  72. Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, Davis S, Blair A, Schenk M, Rothman N, Lan Q (2007) Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER case-control study. Blood 109(7):3050–3059. https://doi.org/10.1182/blood-2006-07-034330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chanock S, Rothman N, Armstrong BK (2007) One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia. Hum Genet 122(5):525–533. https://doi.org/10.1007/s00439-007-0431-2

    Article  CAS  PubMed  Google Scholar 

  74. Wu L, Lu X, Guo J, Zhang T, Wang F, Bao Y (2016) Association between ALDH1L1 gene polymorphism and neural tube defects in the Chinese Han population. Neurol Sci 37(7):1049–1054. https://doi.org/10.1007/s10072-016-2527-8

    Article  PubMed  Google Scholar 

  75. Stevens VL, Rodriguez C, Sun J, Talbot JT, Thun MJ, Calle EE (2008) No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk. Cancer Epidemiol Biomark Prev 17(12):3612–3614. https://doi.org/10.1158/1055-9965.EPI-08-0789

    Article  CAS  Google Scholar 

  76. Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. Vitam Horm 79:1–44. https://doi.org/10.1016/S0083-6729(08)00401-9

    Article  CAS  PubMed  Google Scholar 

  77. MacFarlane AJ, Anderson DD, Flodby P, Perry CA, Allen RH, Stabler SP, Stover PJ (2011) Nuclear localization of de novo thymidylate biosynthesis pathway is required to prevent uracil accumulation in DNA. J Biol Chem 286(51):44015–44022. https://doi.org/10.1074/jbc.M111.307629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strickland KC, Holmes RS, Oleinik NV, Krupenko NI, Krupenko SA (2011) Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes. Chem Biol Interact 191(1–3):122–128. https://doi.org/10.1016/j.cbi.2010.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strickland KC, Krupenko NI, Dubard ME, Hu CJ, Tsybovsky Y, Krupenko SA (2011) Enzymatic properties of ALDH1L2, a mitochondrial 10-formyltetrahydrofolate dehydrogenase. Chem Biol Interact 191(1–3):129–136. 10.16/j.cbi.2011.01.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, Spielman RS (2010) Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Hum Genet 86(5):719–729. https://doi.org/10.1016/j.ajhg.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zsippai A, Szabo DR, Tombol Z, Szabo PM, Eder K, Pallinger E, Gaillard RC, Patocs A, Toth S, Falus A, Racz K, Igaz P (2012) Effects of mitotane on gene expression in the adrenocortical cell line NCI-H295R: a microarray study. Pharmacogenomics 13(12):1351–1361. https://doi.org/10.2217/pgs.12.116

    Article  CAS  PubMed  Google Scholar 

  82. Sobinoff AP, Nixon B, Roman SD, McLaughlin EA (2012) Staying alive: PI3K pathway promotes primordial follicle activation and survival in response to 3MC-induced ovotoxicity. Toxicol Sci 128(1):258–271. https://doi.org/10.1093/toxsci/kfs137

    Article  CAS  PubMed  Google Scholar 

  83. Mazzio EA, Boukli N, Rivera N, Soliman KF (2012) Pericellular pH homeostasis is a primary function of the Warburg effect: inversion of metabolic systems to control lactate steady state in tumor cells. Cancer Sci 103(3):422–432. https://doi.org/10.1111/j.1349-7006.2012.02206.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li L, Lu DZ, Li YM, Zhang XQ, Zhou XX, Jin X (2014) Proteomic analysis of liver mitochondria from rats with nonalcoholic steatohepatitis. World J Gastroenterol 20(16):4778–4786. https://doi.org/10.3748/wjg.v20.i16.4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Edhager AV, Stenbroen V, Nielsen NS, Bross P, Olsen RK, Gregersen N, Palmfeldt J (2014) Proteomic investigation of cultivated fibroblasts from patients with mitochondrial short-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 111(3):360–368. https://doi.org/10.1016/j.ymgme.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  86. Miyo M, Konno M, Colvin H, Nishida N, Koseki J, Kawamoto K, Tsunekuni K, Nishimura J, Hata T, Takemasa I, Mizushima T, Doki Y, Mori M, Ishii H (2016) The importance of mitochondrial folate enzymes in human colorectal cancer. Oncol Rep 37:417–425. https://doi.org/10.3892/or.2016.5264

    Article  PubMed  Google Scholar 

  87. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD (2014) Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7(4):1248–1258. https://doi.org/10.1016/j.celrep.2014.04.045

    Article  CAS  PubMed  Google Scholar 

  88. Gustafsson Sheppard N, Jarl L, Mahadessian D, Strittmatter L, Schmidt A, Madhusudan N, Tegner J, Lundberg EK, Asplund A, Jain M, Nilsson R (2015) The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci Rep 5:15029. https://doi.org/10.1038/srep15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ben-Sahra I, Hoxhaj G, Ricoult SJ, Asara JM, Manning BD (2016) mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351(6274):728–733. https://doi.org/10.1126/science.aad0489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mehrmohamadi M, Liu X, Shestov AA, Locasale JW (2014) Characterization of the usage of the serine metabolic network in human cancer. Cell Rep 9(4):1507–1519. https://doi.org/10.1016/j.celrep.2014.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ackerstaff E, Gimi B, Artemov D, Bhujwalla ZM (2007) Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia 9(3):222–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ishiguro T, Nakajima M, Naito M, Muto T, Tsuruo T (1996) Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 56(4):875–879

    CAS  PubMed  Google Scholar 

  93. Oleinik NV, Krupenko NI, Krupenko SA (2010) ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 29(47):6233–6244. https://doi.org/10.1038/onc.2010.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hwang PH, Lian L, Zavras AI (2012) Alcohol intake and folate antagonism via CYP2E1 and ALDH1: effects on oral carcinogenesis. Med Hypotheses 78(2):197–202. https://doi.org/10.1016/j.mehy.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  95. Muffak-Granero K, Olmedo C, Garcia-Alcalde F, Comino A, Villegas T, Villar JM, Garrote D, Blanco A, Bueno P, Ferron JA (2012) Gene network profiling before and after transplantation in alcoholic cirrhosis liver transplant recipients. Transplant Proc 44(6):1493–1495. https://doi.org/10.1016/j.transproceed.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  96. Min H, Im ES, Seo JS, Mun JA, Burri BJ (2005) Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver. Alcohol Clin Exp Res 29(12):2188–2193

    Article  PubMed  Google Scholar 

  97. Barnett RK, Booms SL, Gura T, Gushrowski M, Miller RR Jr (2009) Exogenous folate ameliorates ethanol-induced brain hyperhomocysteinemia and exogenous ethanol reduces taurine levels in chick embryos. Comp Biochem Physiol C Toxicol Pharmacol 150(1):107–112. https://doi.org/10.1016/j.cbpc.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  98. Berlin KN, Cameron LM, Gatt M, Miller RR Jr (2010) Reduced de novo synthesis of 5-methyltetrahydrofolate and reduced taurine levels in ethanol-treated chick brains. Comp Biochem Physiol C Toxicol Pharmacol 152(3):353–359. 10.16/j.cbpc.2010.06.002

    Article  PubMed  Google Scholar 

  99. Mun JA, Doh E, Min H (2008) In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde. Nutr Res Pract 2(4):195–199. https://doi.org/10.4162/nrp.2008.2.4.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cook RJ, Lloyd RS, Wagner C (1991) Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J Biol Chem 266(8):4965–4973

    CAS  PubMed  Google Scholar 

  101. Pumford NR, Halmes NC, Martin BM, Cook RJ, Wagner C, Hinson JA (1997) Covalent binding of acetaminophen to N-10-formyltetrahydrofolate dehydrogenase in mice. J Pharmacol Exp Ther 280(1):501–505

    CAS  PubMed  Google Scholar 

  102. Stine JG, Chalasani NP (2017) Drug hepatotoxicity: environmental factors. Clin Liver Dis 21(1):103–113. https://doi.org/10.1016/j.cld.2016.08.008

    Article  PubMed  Google Scholar 

  103. Chang WN, Lee GH, Kao TT, Lin CY, Hsiao TH, Tsai JN, Chen BH, Chen YH, Wu HR, Tsai HJ, Fu TF (2014) Knocking down 10-Formyltetrahydrofolate dehydrogenase increased oxidative stress and impeded zebrafish embryogenesis by obstructing morphogenetic movement. Biochim Biophys Acta 1840(7):2340–2350. https://doi.org/10.1016/j.bbagen.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  104. Shaw S, Jayatilleke E, Herbert V, Colman N (1989) Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase-generated superoxide. Biochem J 257(1):277–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Zhao R, Zhang R, Li W, Liao Y, Tang J, Miao Q, Hao W (2013) Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia Pac Psychiatry 5(1):39–50. https://doi.org/10.1111/appy.12010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Krupenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krupenko, S.A., Krupenko, N.I. (2018). ALDH1L1 and ALDH1L2 Folate Regulatory Enzymes in Cancer. In: Vasiliou, V., Zakhari, S., Mishra, L., Seitz, H. (eds) Alcohol and Cancer. Advances in Experimental Medicine and Biology, vol 1032. Springer, Cham. https://doi.org/10.1007/978-3-319-98788-0_10

Download citation

Publish with us

Policies and ethics