Skip to main content

Predicting Solar Intensity Using Cluster Analysis

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11055))

Included in the following conference series:

Abstract

A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewable sources and especially from solar power. One challenge with integrating solar power into the grid is that its power generation is stochastic and depends on various environmental factors. Thus, predicting future energy generation is important to moderate the overall energy requirements. In recent years, the use of machine learning approaches to solar power forecasting is becoming very popular. In this paper, a clustering based data segmentation approach is used to find natural subgrouping in the data. These subgroups are then used to construct forecasting models using various machine learning algorithms. The effectiveness of the approach is demonstrated by comparing the accuracy of clustering based forecasting to the standard forecasting models. The experimental results demonstrate that the proposed clustering based models produce more accurate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan, C., et al.: Photovoltaic and solar power forecasting for smart grid energy management. CSEE J. Power Energy Syst. 1(4), 38–46 (2015)

    Article  Google Scholar 

  2. Hsu, K., Gupta, H.V., Sorooshian, S.: Artificial neural network modeling of the rainfall runoff process. Water Resour. Res. 31(10), 2517–2530 (1995)

    Article  Google Scholar 

  3. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  5. Sharma, N., et al.: Predicting solar generation from weather forecasts using machine learning (2011)

    Google Scholar 

  6. Järventausta, P., et al.: Smart grid power system control in distributed generation environment. Annu. Rev. Control 34(2), 277–286 (2010)

    Article  Google Scholar 

  7. Haque, A., Nehrir, M.H., Mandal, P.: Solar PV power generation forecast using a hybrid intelligent approach, pp. 1–5 (2013)

    Google Scholar 

  8. Sobri, S., Koohi-Kamali, S., Rahim, N.A.: Solar photovoltaic generation forecasting methods: a review. Energy Convers. Manag. 156, 459–497 (2018)

    Article  Google Scholar 

  9. Yona, A., et al.: Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. IEEE Trans. Sustain. Energy 4(2), 527–533 (2013)

    Article  Google Scholar 

  10. Tuohy, A., et al.: Solar forecasting: methods, challenges, and performance. IEEE Power Energy Mag. 13(6), 50–59 (2015)

    Article  Google Scholar 

  11. Ren, Y., Suganthan, P.N., Srikanth, N.: Ensemble methods for wind and solar power forecasting—a state-of-the-art review. Renew. Sustain. Energy Rev. 50, 82–91 (2015)

    Article  Google Scholar 

  12. Mandal, P., et al.: Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 12, 332–337 (2012)

    Article  Google Scholar 

  13. Takahashi, M., Mori, H.: A hybrid intelligent system approach to forecasting of pv generation output. J. Int. Counc. Electr. Eng. 3(4), 295–299 (2013)

    Article  Google Scholar 

  14. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power production. Sol. Energy 122, 191–203 (2015)

    Article  Google Scholar 

  15. Yona, A., et al. Application of neural network to one-day-ahead 24 hours generating power forecasting for photovoltaic system. In: 2007 International Conference on Intelligent Systems Applications to Power Systems (2007)

    Google Scholar 

  16. Ding, M., Wang, L., Bi, R.: An ANN-based approach for forecasting the power output of photovoltaic system. Procedia Environ. Sci. 11, 1308–1315 (2011)

    Article  Google Scholar 

  17. Cunningham, P., Carney, J., Jacob, S.: Stability problems with artificial neural networks and the ensemble solution. Artif. Intell. Med. 20(3), 217–225 (2000)

    Article  Google Scholar 

  18. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

    Article  Google Scholar 

  19. Grégoire, G.: Multiple linear regression. Eur. Astron. Soc. Publ. Ser. 66, 45–72 (2014)

    Article  Google Scholar 

  20. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  21. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. IEEE Comput. 29, 31–44 (1996)

    Article  Google Scholar 

  22. Zhang, G.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C 30(4), 451–462 (2000)

    Article  Google Scholar 

  23. Murthy, S.K.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Mining Knowl. Discov. 2(4), 345–389 (1998)

    Article  Google Scholar 

  24. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  25. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Raza, M.Q., Nadarajah, M., Ekanayake, C.: Review on recent advances in PV output power forecast. Sol. Energy 136, 125–144 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, W., Sahil, S., Mughal, A. (2018). Predicting Solar Intensity Using Cluster Analysis. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98443-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98442-1

  • Online ISBN: 978-3-319-98443-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics