Skip to main content

Imbalanced Classification for Big Data

  • Chapter
  • First Online:
Learning from Imbalanced Data Sets

Abstract

New developments in computation have allowed an explosion for both data generation and storage. The high value that is hidden within this large volume of data has attracted more and more researchers to address the topic of Big Data analytics. The main difference between addressing Big Data applications and carrying out traditional DM tasks is scalability. To overcome this issue, the MapReduce framework has arisen as a “de facto” solution. Basically, it carries out a “divide-and-conquer” distributed procedure in a fault-tolerant way (supported by a distributed file system) to adapt for commodity hardware. Apart from the difficulties in addressing the Big Data problem itself, we must take into account that the events of interest might occur infrequently. Having in mind the challenges of mining rare classes in standard classification tasks, adding this to the problem of addressing high volumes of data impose a strong constraint for the development of both accurate and scalable solutions. In order to present this interesting topic, current chapter is organized as follows. First, Sect. 13.1 provides a quick overview on Big Data analytics in the context of imbalanced classification. Then, Sect. 13.2 presents the topic of Big Data in detail, focusing on the MapReduce programming model, the Spark framework, and those software libraries that includes Big Data implementations for ML algorithms. Section 13.3 shows an overview on those works that address imbalanced classification for Big Data problems. Then, Sect. 13.4 presents a discussion on the challenges and open problems on imbalanced Big Data classification. Finally, Sect. 13.5 summarizes and concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://hadoop.apache.org

  2. 2.

    http://spark.apache.org/

  3. 3.

    http://spark.apache.org

  4. 4.

    http://flink.apache.org/

  5. 5.

    http://storm.apache.org/

  6. 6.

    http://mahout.apache.org/

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. Apache Software Foundation: Apache Spark: lightning-fast cluster computing. http://spark.apache.org/ (2016)

  3. Apache Software Foundation: Hadoop distributed file system: users guide. https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html (2018)

  4. Bhagat, R.C., Patil, S.S.: Enhanced smote algorithm for classification of imbalanced big-data using random forest. In: Souvenir of the 2015 IEEE International Advance Computing Conference, IACC’2015, Bangalore, pp. 403–408 (2015)

    Google Scholar 

  5. Blagus, R., Lusa, L.: SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 14(1), 106 (2013)

    Article  Google Scholar 

  6. Brzezinski, D., Piernik, M.: Structural XML classification in concept drifting data streams. N. Gener. Comput. 33(4), 345–366 (2015)

    Article  Google Scholar 

  7. Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.A., Caelen, O., Mazzer, Y., Bontempi, G.: Scarff: a scalable framework for streaming credit card fraud detection with spark. Inf. Fusion 41, 182–194 (2018)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over–sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  9. Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A.: Automatically countering imbalance and its empirical relationship to cost. Data Min. Knowl. Disc. 17(2), 225–252 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  11. Cyganek, B.: Object Detection and Recognition in Digital Images: Theory and Practice, 1st edn. Wiley, New York (2013)

    Book  Google Scholar 

  12. Databricks Inc.: Spark Packages: 3rd Party Spark Packages. https://spark-packages.org/ (2018)

  13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI04: Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation, San Francisco. USENIX Association (2004)

    Google Scholar 

  14. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  15. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1), 72–77 (2010)

    Article  Google Scholar 

  16. Elsebakhi, E., Lee, F., Schendel, E., Haque, A., Kathireason, N., Pathare, T., Syed, N., Al-Ali, R.: Large-scale machine learning based on functional networks for biomedical Big Data with high performance computing platforms. J. Comput. Sci. 11, 69–81 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fan, J., Han, F., Liu, H.: Challenges of Big Data analysis. Nat. Sci. Rev. 1(2), 293–314 (2014)

    Article  Google Scholar 

  18. Fernández, A., López, V., Galar, M., Del Jesus, M., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl.-based Syst. 42, 97–110 (2013)

    Article  Google Scholar 

  19. Fernandez, A., del Rio, S., Chawla, N.V., Herrera, F.: An insight into imbalanced Big Data classification: outcomes and challenges. Complex Intell. Syst. 3(2), 105–120 (2017)

    Article  Google Scholar 

  20. Fernández, A., Río, S., López, V., Bawakid, A., del Jesus, M.J., Benítez, J., Herrera, F.: Big Data with cloud computing: an insight on the computing environment, MapReduce and programming framework. WIREs Data Min. Knowl. Disc. 4(5), 380–409 (2014)

    Article  Google Scholar 

  21. Fong, S., Liu, K., Cho, K., Wong, R., Mohammed, S., Fiaidhi, J.: Improvised methods for tackling Big Data stream mining challenges: case study of human activity recognition. J. Supercomput. 72, 3927–3959 (2016)

    Article  Google Scholar 

  22. Fong, S., Zhuang, Y., Wong, R., Mohammed, S.: A scalable data stream mining methodology: stream based holistic analytics and reasoning in parallel. In: Proceedings of the 2nd International Symposium on Computational and Business Intelligence, New Delhi, pp. 110–115 (2014)

    Google Scholar 

  23. Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., Gnanzou, D.: How ‘Big Data’ can make big impact: findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165, 234–246 (2015)

    Article  Google Scholar 

  24. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  25. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for class imbalance problem: bagging, boosting and hybrid based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

  26. Galpert, D., Fernndez, A., Herrera, F., Antunes, A., Molina-Ruiz, R., Agero-Chapin, G.: Surveying alignment-free features for ortholog detection in related yeast proteomes by using supervised Big Data classifiers. BMC Bioinform. 19(1), 166:1–166:17 (2018)

    Google Scholar 

  27. Galpert, D., Río, S., Herrera, F., Ancede-Gallardo, E., Antunes, A., Agero-Chapin, G.: An effective Big Data supervised imbalanced classification approach for ortholog detection in related yeast species. BioMed Res. Int. 2015, 1–12 (2015)

    Article  Google Scholar 

  28. Gutierrez, P., Lastra, M., Bacardit, J., Benitez, J., Herrera, F.: GPU-SME-kNN: scalable and memory efficient kNN and lazy learning using GPUs. Inf. Sci. 373, 165–182 (2016)

    Article  Google Scholar 

  29. Gutierrez, P.D., Lastra, M., Benitez, J.M., Herrera, F.: SMOTE-GPU: Big Data preprocessing on commodity hardware for imbalanced classification. Prog. Artif. Intell. 6(4), 347–354 (2017)

    Article  Google Scholar 

  30. Hamstra, M., Karau, H., Zaharia, M., Konwinski, A., Wendell, P.: Learning Spark: Lightning-Fast Big Data Analytics. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  31. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Ullah Khan, S.: The rise of “Big Data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  32. Hu, F., Li, H.: A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE. Math. Probl. Eng. 2013, 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Hu, F., Li, H., Lou, H., Dai, J.: A parallel oversampling algorithm based on NRSBoundary-SMOTE. J. Inf. Comput. Sci. 11(13), 4655–4665 (2014)

    Article  Google Scholar 

  34. Hu, H., Wen, Y., Chua, T., Li, X.: Toward scalable systems for Big Data analytics: a technology tutorial. IEEE Access 2, 652–687 (2014)

    Article  Google Scholar 

  35. Hurtado, J., Taweewitchakreeya, N., Kong, X., Zhu, X.: A classifier ensembling approach for imbalanced social link prediction. In: 12th International Conference on Machine Learning and Applications, ICMLA’2013, Miami, pp. 436–439. IEEE (2013)

    Google Scholar 

  36. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big Data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

    Article  Google Scholar 

  37. Jo, T., Japkowicz, N.: Class imbalances versus small disjuncts. ACM SIGKDD Explor. Newsl. 6(1), 40–49 (2004)

    Article  Google Scholar 

  38. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  39. Kamal, S., Ripon, S.H., Dey, N., Ashour, A.S., Santhi, V.: A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset. Comput. Methods Prog. Biomed. 131, 191–206 (2016)

    Article  Google Scholar 

  40. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in Big Data analytics. J. Parallel Distrib. Comput. 74(7), 2561–2573 (2014)

    Article  Google Scholar 

  41. Kraska, T.: Finding the needle in the Big Data systems haystack. IEEE Internet Comput. 17(1), 84–86 (2013)

    Article  Google Scholar 

  42. Krawczyk, B.: GPU-accelerated extreme learning machines for imbalanced data streams with concept drift. Proc. Comput. Sci. 80, 1692–1701 (2016). https://doi.org/10.1016/j.procs.2016.05.509

    Article  Google Scholar 

  43. Lam, C.: Hadoop in Action, 1st edn. Manning, Greenwich (2011)

    Google Scholar 

  44. Lichman, M.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2013). http://archive.ics.uci.edu/ml

    Google Scholar 

  45. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250(20), 113–141 (2013)

    Article  Google Scholar 

  46. López, V., Río, S., Benítez, J.M., Herrera, F.: Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced Big Data. Fuzzy Sets Syst. 258, 5–38 (2015)

    Article  MathSciNet  Google Scholar 

  47. Lyubimov, D., Palumbo, A.: Apache Mahout: Beyond MapReduce, 1st edn. CreateSpace Independent, Louisville (2016)

    Google Scholar 

  48. Mahout, A.: Apache Mahout. https://mahout.apache.org/ (2018)

  49. Mardani, M., Mateos, G., Giannakis, G.B.: Subspace learning and imputation for streaming Big Data matrices and tensors. IEEE Trans. Signal Process. 63(10), 2663–2677 (2015)

    Article  MathSciNet  Google Scholar 

  50. Marx, V.: The big challenges of Big Data. Nature 498(7453), 255–260 (2013)

    Article  Google Scholar 

  51. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A.: MLlib: machine learning in Apache Spark. J. Mach. Learn. Res. 17(34), 1–7 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action, 1st edn. Manning Publications Co., Shelter Island (2011)

    Google Scholar 

  53. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learning of tree ensembles with MapReduce. Proc. VLDB Endow. 2(2), 1426–1437 (2009)

    Article  Google Scholar 

  54. Park, S.H., Ha, Y.G.: Large imbalance data classification based on MapReduce for traffic accident prediction. In: Proceedings – 2014 8th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS’2014, Birmingham, pp. 45–49 (2014)

    Google Scholar 

  55. Park, S.H., Kim, S.M., Ha, Y.G.: Highway traffic accident prediction using VDS Big Data analysis. J. Supercomput. 72, 2815–2831 (2016)

    Article  Google Scholar 

  56. Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., Herrera, F.: Big Data: tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inf. Fusion 42, 51–61 (2018)

    Article  Google Scholar 

  57. Reed, D.A., Dongarra, J.: Exascale computing and Big Data. Commun. ACM 58(7), 56–68 (2015)

    Article  Google Scholar 

  58. Río, S., Benítez, J.M., Herrera, F.: Analysis of data preprocessing increasing the oversampling ratio for extremely imbalanced Big Data classification. In: Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 2, pp. 180–185 (2015)

    Google Scholar 

  59. Río, S., López, V., Benítez, J., Herrera, F.: On the use of MapReduce for imbalanced Big Data using random forest. Inf. Sci. 285, 112–137 (2014)

    Article  Google Scholar 

  60. Río, S., López, V., Benítez, J.M., Herrera, F.: A MapReduce approach to address Big Data classification problems based on the fusion of linguistic fuzzy rules. Int. J. Comput. Intell. Syst. 8(3), 422–437 (2015)

    Article  Google Scholar 

  61. Tang, M., Yang, C., Zhang, K., Xie, Q.: Cost-sensitive support vector machine using randomized dual coordinate descent method for big class-imbalanced data classification. Abstr. Appl. Anal. 2014, 416591:1–416591:9 (2014)

    MathSciNet  Google Scholar 

  62. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive – a warehousing solution over a map-reduce framework. J. Very Large DataBases 2(2), 1626–1629 (2009)

    Google Scholar 

  63. Triguero, I., Derrac, J., García, S., Herrera, F.: Integrating a differential evolution feature weighting scheme into prototype generation. Neurocomputing 97, 332–343 (2012)

    Article  Google Scholar 

  64. Triguero, I., Galar, M., Merino, D., Maillo, J., Bustince, H., Herrera, F.: Evolutionary undersampling for extremely imbalanced Big Data classification under Apache Spark. In: IEEE Congress on Evolutionary Computation (CEC’2016), Vancouver, pp. 640–647 (2016)

    Google Scholar 

  65. Triguero, I., Galar, M., Vluymans, S., Cornelis, C., Bustince, H., Herrera, F., Saeys, Y.: Evolutionary undersampling for imbalanced Big Data classification. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 715–722 (2015)

    Google Scholar 

  66. Triguero, I., Río, S., López, V., Bacardit, J., Benítez, J.M., Herrera, F.: Rosefw-RF: the winner algorithm for the ECBDL’14 Big Data competition: an extremely imbalanced Big Data bioinformatics problem. Knowl.-Based Syst. 87, 69–79 (2015)

    Article  Google Scholar 

  67. Wang, X., Liu, X., Matwin, S.: A distributed instance-weighted SVM algorithm on large-scale imbalanced datasets. In: Proceedings – 2014 IEEE International Conference on Big Data, IEEE Big Data 2014, Washington, DC, pp. 45–51 (2014)

    Google Scholar 

  68. Weiss, G.M.: The impact of small disjuncts on classifier learning. In: Stahlbock, R., Crone, S.F., Lessmann, S. (eds.) Data Mining, Annals of Information Systems, vol. 8, pp. 193–226. Springer, New York (2010)

    Google Scholar 

  69. Weiss, G.M., Provost, F.J.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

    Article  Google Scholar 

  70. White, T.: Hadoop: The Definitive Guide, 4th edn. O’Reilly Media, Sebastopol (2015)

    Google Scholar 

  71. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with Big Data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  72. YARN, A.: Apache YARN. https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html (2018)

  73. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Presented as Part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI’12), pp. 15–28. USENIX, San Jose (2012)

    Google Scholar 

  74. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: HotCloud 2010, pp. 1–7 (2010)

    Google Scholar 

  75. Zhai, J., Zhang, S., Wang, C.: The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers. Int. J. Mach. Learn. Cybern. 8(3), 1009–1017 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández, A., García, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F. (2018). Imbalanced Classification for Big Data. In: Learning from Imbalanced Data Sets. Springer, Cham. https://doi.org/10.1007/978-3-319-98074-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98074-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98073-7

  • Online ISBN: 978-3-319-98074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics