Skip to main content

Approximating GED Using a Stochastic Generator and Multistart IPFP

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

The Graph Edit Distance defines the minimal cost of a sequence of elementary operations transforming a graph into another graph. This versatile concept with an intuitive interpretation is a fundamental tool in structural pattern recognition. However, the exact computation of the Graph Edit Distance is \(\mathcal {NP}\)-complete. Iterative algorithms such as the ones based on Franck-Wolfe method provide a good approximation of true edit distance with low execution times. However, underlying cost function to optimize being neither concave nor convex, the accuracy of such algorithms highly depends on the initialization. In this paper, we propose a smart random initializer using promising parts of previously computed solutions.

Work supported by Region Normandie under project RIN AGAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 138–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_14

    Chapter  Google Scholar 

  2. Abu-Aisheh, Z., et al.: Graph edit distance contest: results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017). https://doi.org/10.1016/j.patrec.2017.10.007

    Article  Google Scholar 

  3. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Patt. Recogn. Lett. 87, 38–46 (2017). https://doi.org/10.1016/j.patrec.2016.10.001

    Article  Google Scholar 

  4. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19

    Chapter  Google Scholar 

  5. Daller, E., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph edit distance from several assignments and multiple IPFP. In: International Conference on Pattern Recognition Applications and Methods (2018). https://doi.org/10.5220/0006599901490158

  6. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_8

    Chapter  Google Scholar 

  7. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  8. Gaüzère, B., Bougleux, S., Brun, L.: Approximating graph edit distance using GNCCP. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 496–506. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_44

    Chapter  Google Scholar 

  9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27, 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.004

    Article  Google Scholar 

  10. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015). https://doi.org/10.1016/j.patcog.2014.11.002

    Article  MATH  Google Scholar 

  11. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_20

    Chapter  Google Scholar 

  12. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

    Article  MATH  Google Scholar 

  13. Wu, Z., et al.: MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018). https://doi.org/10.1039/C7SC02664A

    Article  Google Scholar 

  14. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009). https://doi.org/10.14778/1687627.1687631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Boria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boria, N., Bougleux, S., Brun, L. (2018). Approximating GED Using a Stochastic Generator and Multistart IPFP. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics