Skip to main content

Ring Based Approximation of Graph Edit Distance

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

The graph edit distance (\(\mathrm {GED}\)) is a flexible graph dissimilarity measure widely used within the structural pattern recognition field. A widely used paradigm for approximating \(\mathrm {GED}\) is to define local structures rooted at the nodes of the input graphs and use these structures to transform the problem of computing \(\mathrm {GED}\) into a linear sum assignment problem with error correction (\(\mathrm {LSAPE}\)). In the literature, different local structures such as incident edges, walks of fixed length, and induced subgraphs of fixed radius have been proposed. In this paper, we propose to use rings as local structure, which are defined as collections of nodes and edges at fixed distances from the root node. We empirically show that this allows us to quickly compute a tight approximation of \(\mathrm {GED}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source code and datasets: http://www.inf.unibz.it/~blumenthal/gedlib.html.

References

  1. Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L., Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest 2016: results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017). https://doi.org/10.1016/j.patrec.2017.10.007

    Article  Google Scholar 

  2. Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018). https://doi.org/10.1109/TKDE.2017.2772243

    Article  Google Scholar 

  3. Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit distance. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.05.002

    Article  Google Scholar 

  4. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2017). https://doi.org/10.1016/j.patrec.2016.10.001

    Article  Google Scholar 

  5. Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assignment with error-correction and no cost constraints. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.03.032

    Article  Google Scholar 

  6. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance computation combining bipartite matching and exact neighborhood substructure distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_19

    Chapter  Google Scholar 

  7. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_8

    Chapter  Google Scholar 

  8. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_8

    Chapter  Google Scholar 

  9. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011). https://doi.org/10.1145/1916461.1916468

    Article  MathSciNet  MATH  Google Scholar 

  10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.004

    Article  Google Scholar 

  11. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015). https://doi.org/10.1016/j.patcog.2014.11.002

    Article  MATH  Google Scholar 

  12. Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation by centrality measures. In: ICPR 2014, pp. 3910–3914. IEEE Computer Society (2014). https://doi.org/10.1109/ICPR.2014.671

  13. Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit distance in quadratic time. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 3–12. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_1

    Chapter  Google Scholar 

  14. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_20

    Chapter  Google Scholar 

  15. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013). https://doi.org/10.1007/s10898-012-9951-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Serratosa, F., Cortés, X.: Graph edit distance: moving from global to local structure to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015). https://doi.org/10.1016/j.patrec.2015.08.003

    Article  Google Scholar 

  17. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. PVLDB 2(1), 25–36 (2009). https://doi.org/10.14778/1687627.1687631

    Article  Google Scholar 

  18. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015). https://doi.org/10.1109/TKDE.2014.2349924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Blumenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L. (2018). Ring Based Approximation of Graph Edit Distance. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics