Skip to main content

Line Voronoi Diagrams Using Elliptical Distances

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

The paper introduces an Elliptical Line Voronoi diagram. In contrast to the classical approaches, it represents the line segment by its end points, and computes the distance from point to line segment using the Confocal Ellipse-based Distance. The proposed representation offers specific mathematical properties, prioritizes the sites of the greater length and corners with the obtuse angles without using an additional weighting scheme. The above characteristics are suitable for the practical applications such as skeletonization and shape smoothing.

A. Gabdulkhakova—Supported by the Austrian Agency for International Cooperation in Education and Research (OeAD) within the OeAD Sonderstipendien program, and by the Faculty of Informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If for several ellipses the focal points are the same, we denote it as E(a).

References

  1. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345–405 (1991)

    Article  Google Scholar 

  2. Hwang, F.K.: An O(n log n) algorithm for rectilinear minimal spanning trees. J. ACM (JACM) 26(2), 177–182 (1979)

    Article  MathSciNet  Google Scholar 

  3. Fortune, S.J.: A fast algorithm for polygon containment by translation. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 189–198. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0015744

    Chapter  Google Scholar 

  4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-61568-9

    Book  MATH  Google Scholar 

  5. Lee, D.-T.: Two-dimensional Voronoi diagrams in the \(L_p\)-metric. J. ACM (JACM) 27(4), 604–618 (1980)

    Google Scholar 

  6. Chew, L.P., Dyrsdale III, R.L.S.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, pp. 235–244 (1985)

    Google Scholar 

  7. Klein, R., Wood, D.: Voronoi diagrams based on general metrics in the plane. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 281–291. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0035852

    Chapter  Google Scholar 

  8. Aichholzer, O., Aurenhammer, F., Chen, D.Z., Lee, D., Papadopoulou, E.: Skew Voronoi diagrams. Int. J. Comput. Geom. Appl. 9(03), 235–247 (1999)

    Article  MathSciNet  Google Scholar 

  9. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)

    Article  MathSciNet  Google Scholar 

  10. Schaudt, B.F., Drysdale, R.L.: Multiplicatively weighted crystal growth Voronoi diagrams. In: Proceedings of the Seventh Annual Symposium on Computational Geometry, pp. 214–223. ACM (1991)

    Google Scholar 

  11. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discrete Comput. Geom. 25(2), 271–291 (2001)

    Article  MathSciNet  Google Scholar 

  12. Gabdulkhakova, A., Kropatsch, W.G.: Confocal ellipse-based distance and confocal elliptical field for polygonal shapes. In: Proceedings of the 24th International Conference on Pattern Recognition, ICPR (in print)

    Google Scholar 

  13. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company, Singapore (2013)

    Book  Google Scholar 

  14. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for Perception of Speech and Visual Forms, pp. 362–380 (1967)

    Google Scholar 

  15. Veldkamp, G.R.: The isoperimetric point and the point(s) of equal detour in a triangle. Am. Math. Mon. 92(8), 546–558 (1985)

    Article  MathSciNet  Google Scholar 

  16. Soddy, F.: The Kiss precise. Nature 137, 1021 (1936)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysylu Gabdulkhakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabdulkhakova, A., Langer, M., Langer, B.W., Kropatsch, W.G. (2018). Line Voronoi Diagrams Using Elliptical Distances. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics