Skip to main content

Quality Assurance of Solar Radiation Measurements

  • Chapter
  • First Online:
Solar Resources Mapping

Abstract

Solar radiation measurements are necessary for every solar energy project to evaluate solar resource assessment studies. Quality assurance of solar radiation measurements is essential in all the stages of solar resource analysis. Model development and assessment, improvement of models and characterisation of the uncertainty, among others features, depend strongly on the accuracy and quality efforts in designing and operating the solar radiation ground station. This chapter summarises several aspects involved in ensuring the quality of solar radiation measurements, addressing the requirements for instrument selection and the quality methods applied to solar radiation data. This chapter has been written intended to be useful for project or group leaders involved in solar resource assessment and not a rigorous scientist text since the chapter presents a summary of many manuals for quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.nrel.gov/grid/solar-resource/seri-qc.html

References

  • Beyer HG, Polo MJ, Suri M et al (2009) Report on benchmarking of radiation products. Management and exploitation of solar resource knowledge project report D 1.1.3. CA – Contract No. 038665

    Google Scholar 

  • Dumortier D (2012) Project ENDORSE, 1–9. doi:Grant agreement no. 262892

    Google Scholar 

  • Espinar B, Wald L, Blanc P et al (2011) Report on the harmonization and qualification of meteorological data: Project ENDORSE—Energy downstream service: providing energy components for GMES—Grant agreement no. 262892, Paris, France

    Google Scholar 

  • Esterhuyse DJ (2004) Establishment of the South African baseline surface radiation network station at De Aar

    Google Scholar 

  • Geiger M, Diabaté L, Ménard L, Wald L (2002) A web service for controlling the quality of measurements of global solar irradiation. Sol Energy. https://doi.org/10.1016/s0038-092x(02)00121-4

    Article  Google Scholar 

  • Geuder N, Wolfertstetter F, Wilbert S et al (2015) Screening and flagging of solar irradiation and ancillary meteorological data. Energy Procedia 69:1989–1998

    Article  Google Scholar 

  • ISO/IEC (2008) Uncertainty of measurement—Guide to the expression of uncertainty in measurement (GUM:1995). ISO/IEC Guide 98-32008. https://doi.org/10.1373/clinchem.2003.030528

    Article  Google Scholar 

  • ISO 17025 (2017) ISO/IEC 17025:2017—Technical committee: ISO/CASCO & Committee on conformity assessment—General requirements for the competence of testing and calibration laboratories

    Google Scholar 

  • ISO 9001 (2015) ISO 9001: 2015—Systems, technical committee ISO/TC176/SC2 Quality—Quality management systems-requirements

    Google Scholar 

  • Journée M, Bertrand C (2011) Quality control of solar radiation data within the RMIB solar measurements network. Sol Energy. https://doi.org/10.1016/j.solener.2010.10.021

    Article  Google Scholar 

  • Kasten F (1980) A simple parameterisation of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rundschau 33:124–127

    Google Scholar 

  • Kumar A, Gomathinayagam S, Giridhar G et al (2013) Field experiences with the operation of solar radiation resource assessment stations in India. Energy Procedia 49:2351–2361

    Article  Google Scholar 

  • Lee K, Yoo H, Levermore GJ (2013) Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea. Renew Energy 57:190–199. https://doi.org/10.1016/j.renene.2013.01.028

    Article  Google Scholar 

  • Long CN (1996) Report on broadband solar radiometer inconsistencies at the atmospheric radiation measurement (ARM) Southern Great Plains (SGP) Central facility during the arm enhanced shortwave experiment (ARESE). ARM-TR 003. Richland, Washington, USA

    Google Scholar 

  • Long CN, Dutton EG (2002) BSRN global network recommended QC tests, V2.0. BSRN Technical Report

    Google Scholar 

  • Long CN, Shi Y (2006) The QCRad value added product: surface radiation measurement quality control testing, including climatology configurable limits. Office of science, office of biological and environmental research

    Google Scholar 

  • McArthur LBJ (2004) Baseline surface radiation network (BSRN): operations manual (Version 2.1)

    Google Scholar 

  • Moradi I (2009) Quality control of global solar radiation using sunshine duration hours. Energy. https://doi.org/10.1016/j.energy.2008.09.006

    Article  Google Scholar 

  • Moreno-Tejera S, Ramírez-Santigosa L, Silva-Pérez MA (2015) A proposed methodology for quick assessment of timestamp and quality control results of solar radiation data. Renew Energy 78:531–537. https://doi.org/10.1016/j.renene.2015.01.031

    Article  Google Scholar 

  • NREL (1993) User’s manual for SERI_QC software—Assessing the quality of solar radiation data. NREL/TP-463-5608. Golden, CO

    Google Scholar 

  • Perez-Astudillo D, Bachour D, Martin-Pomares L (2018a) Improved quality control protocols on solar radiation measurements. Sol Energy 169:425–433. https://doi.org/10.1016/j.solener.2018.05.028

    Article  Google Scholar 

  • Perez-Astudillo D, Bachour D, Martin-Pomares L, Perez-Astudillo D (2018b) Effect of solar position calculations on filtering, pp 2–3

    Google Scholar 

  • Perez R, Ineichen P, Seals R, Zelenka A (1990) Making full use of the clearness index for parameterizing hourly insolation conditions. Sol Energy 45:111–114

    Article  Google Scholar 

  • Polo J, Wilbert S, Ruiz-Arias JA et al (2016) Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Sol Energy 132:25–37. https://doi.org/10.1016/j.solener.2016.03.001

    Article  Google Scholar 

  • Schwandt M, Chhatbar K, Meyer R et al (2014) Quality check procedures and statistics for the Indian SRRA solar radiation measurement network. Energy Procedia 57:1227–1236

    Article  Google Scholar 

  • Tang W, Yang K, He J, Qin J (2010) Quality control and estimation of global solar radiation in China. Sol Energy. https://doi.org/10.1016/j.solener.2010.01.006

    Article  Google Scholar 

  • Technical Committee: ISO/TC 180/SC 1 & C-M and data (1992) ISO 9847: 1992—Solar energy—Calibration of field pyranometers by comparison to a reference pyranometer

    Google Scholar 

  • Technical Committee: ISO/TC 180/SC 1 & C-M and data (1993) ISO 9846: 1993—Solar energy—Calibration of a pyranometer using a pyrheliometer

    Google Scholar 

  • Technical Committee: ISO/TC 180/SC 1 & C-M and data (1990a) ISO 9059: 1990—Solar energy—Calibration of field pyrheliometers by comparison to a reference pyrheliometer

    Google Scholar 

  • Technical Committee: ISO/TC 180/SC 1 & C-M and data (1990b) ISO 9060: 1990—Solar energy—Specification and classification of instruments for measuring hemispherical solar and direct solar radiation

    Google Scholar 

  • Urraca R, Gracia-Amillo AM, Huld T, et al (2017) Quality control of global solar radiation data with satellite-based products. Sol Energy. https://doi.org/10.1016/j.solener.2017.09.032

    Article  Google Scholar 

  • Younes S, Claywell R, Muneer T (2005) Quality control of solar radiation data: Present status and proposed new approaches. Energy 30:1533–1549

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish National Funding Program for Scientific and Technical Research of Excellence, Generation of Knowledge Subprogram, 2017 call, DEPRISACR project (reference CGL2017-87299-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José P. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, J.P., Balenzategui, J.L., Martín-Pomares, L., Wilbert, S., Polo, J. (2019). Quality Assurance of Solar Radiation Measurements. In: Polo, J., Martín-Pomares, L., Sanfilippo, A. (eds) Solar Resources Mapping. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97484-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97484-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97483-5

  • Online ISBN: 978-3-319-97484-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics