Skip to main content

Information Encoding

  • Chapter
  • First Online:
Supervised Learning with Quantum Computers

Abstract

If we want to use a quantum computer to learn from classical data—which was in the introduction referred to as the CQ case—we have to think about how to represent features by a quantum system. We furthermore have to design a recipe for “loading” data from a classical memory into the quantum computer. In quantum computing, this process is called state preparation and constructs the initial state that is the input of the quantum machine learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is not only true for quantum machine learning algorithms. For example, the classically hard graph isomorphism problem is efficiently solvable on a quantum computer if a superposition of isomorph graphs can be created efficiently [1].

  2. 2.

    Bernoulli sampling is equivalent to a (biased) coin toss experiment: We flip a coin S times and want to estimate the bias p, i.e. with what probability the coin produces ‘heads’.

  3. 3.

    Note that there are effective nonlinear dynamics, see for example [31].

  4. 4.

    Hamiltonian simulation research can be distinguished into analog and digital approaches to simulation. Roughly speaking, analog simulation finds quantum systems that “naturally” simulate Hamiltonians, while digital simulation decomposes the time evolution into quantum gates, which is more relevant in the context of this book.

References

  1. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth annual ACM Symposium on Theory of Computing, pp. 20–29. ACM (2003)

    Google Scholar 

  2. Schuld, M., Petruccione, F.: Quantum machine learning. In: C. Sammut, G.I. Webb (eds.) Encyclopaedia of Machine Learning and Data Mining. Springer (2016)

    Google Scholar 

  3. Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  4. Trugenberger, C.A.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.-C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S.-H., Lung, H.-L., et al.: Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52(4.5):465–479 (2008)

    Google Scholar 

  7. Kyaw, T.H., Felicetti, S., Romero, G., Solano, E., Kwek, L.-C.: Scalable quantum memory in the ultrastrong coupling regime. Sci. Rep. 5(8621) (2015)

    Google Scholar 

  8. Bennett, C.H.: Logical reversibility of computation. In: M. Demon (ed.) Entropy, Information, Computing, pp. 197–204 (1973)

    Google Scholar 

  9. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 101–117 (2001)

    Google Scholar 

  10. Wilson, E.B.: Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22(158), 209–212 (1927)

    Article  Google Scholar 

  11. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015)

    Article  Google Scholar 

  12. Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M., Eisert, J.: Dissipative quantum Church-Turing theorem. Phys. Rev. Lett. 107(12), 120501 (2011)

    Article  ADS  Google Scholar 

  13. Knill, E.: Approximation by quantum circuits (1995). arXiv:quant-ph/9508006

  14. Mikko, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93(13), 130502 (2004)

    Google Scholar 

  15. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)

    Article  ADS  Google Scholar 

  16. Plesch, M., Brukner, Č.: Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83(3), 032302 (2011)

    Article  ADS  Google Scholar 

  17. Iten, R., Colbeck, R., Kukuljan, I., Home, J., Christandl, M.: Quantum circuits for isometries. Phys. Rev. A 93(3), 032318 (2016)

    Article  ADS  Google Scholar 

  18. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transformation of quantum states using uniformly controlled rotations. Quantum Inf. Comput. 5(467) (2005)

    Google Scholar 

  19. Grover, L., Rudolph,T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002). arXiv:0208112v1

  20. Kaye, P., Mosca, M.: Quantum networks for generating arbitrary quantum states. In: Proceedings of the International Conference on Quantum Information, OSA Technical Digest Series, pp. PB28. ICQI (2001). arXiv:quant-ph/0407102v1

  21. Soklakov, A.N., Schack, R.: Efficient state preparation for a register of quantum bits. Phys. Rev. A 73(1):012307 (2006)

    Google Scholar 

  22. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  24. Prakash, A.: Quantum Algorithms for Linear Algebra and Machine Learning. Ph.D thesis, EECS Department, University of California, Berkeley, Dec 2014

    Google Scholar 

  25. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  26. Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum assisted Gaussian process regression (2015). arXiv:1512.03929

  27. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press (2002)

    Google Scholar 

  28. Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83(24), 5162 (1999)

    Article  ADS  Google Scholar 

  29. Gisin, N.: Weinberg’s non-linear quantum mechanics and supraluminal communications. Phys. Lett. A 143(1), 1–2 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Peres, A.: Nonlinear variants of Schrödinger’s equation violate the second law of thermodynamics. Phys. Rev. Lett. 63(10), 1114 (1989)

    Article  ADS  Google Scholar 

  31. Meyer, D.A., Wong, T.G.: Nonlinear quantum search using the Gross-Pitaevskii equation. New J. Phys. 15(6), 063014 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Paetznick, A., Svore, K.M.: Repeat-until-success: Non-deterministic decomposition of single-qubit unitaries. Quantum Inf. Comput. 14, 1277–1301 (2013)

    MathSciNet  Google Scholar 

  33. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2):5–43 (2003)

    Google Scholar 

  34. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    Article  ADS  Google Scholar 

  35. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. Childs, A.M.: Quantum information processing in continuous time. Ph.D thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  37. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 283–292. ACM (2014)

    Google Scholar 

  39. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 792–809. IEEE (2015)

    Google Scholar 

  40. Childs, A.M., Kothari, R.: Limitations on the simulation of non-sparse Hamiltonians. Quantum Inf. Comput. 10(7), 669–684 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2018). Information Encoding. In: Supervised Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96424-9_5

Download citation

Publish with us

Policies and ethics