Skip to main content

Memory for Salient Landmarks: Empirical Findings and a Cognitive Model

  • Conference paper
  • First Online:
Spatial Cognition XI (Spatial Cognition 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11034))

Included in the following conference series:

Abstract

We test the effect of a landmark’s visual and structural salience on memory retrieval of turning directions at choice points in a VR environment. We find a higher probability for a correct turning decision at intersections where the location of the visually salient landmark converges with the turning direction as compared to intersections where the location of the visually salient landmark diverges from the turning direction. Although altered versions of the intersections were mostly recognized as being novel, we found systematic error patterns depending on the placement in the original intersection. A cognitive model in the ACT-R architecture grounds these findings in an established framework of human memory. Our findings have implications, for example, for the selection of suitable landmarks for navigation assistance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alkaike Information Criterion [1].

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  2. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Psychology Press, Hove (1998)

    Google Scholar 

  3. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036 (2004)

    Article  Google Scholar 

  4. Bates, D., Mächler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015)

    Article  Google Scholar 

  5. Buchner, A., Jansen-Osmann, P.: Is route learning more than serial learning? Spat. Cogn. Comput. 8(4), 289–305 (2008)

    Article  Google Scholar 

  6. Denis, M., Pazzaglia, F., Cornoldi, C., Bertolo, L.: Spatial discourse and navigation: an analysis of route directions in the city of venice. Appl. Cogn. Psychol. 13(2), 145–174 (1999)

    Article  Google Scholar 

  7. Hamburger, K., Knauff, M.: SQUARELAND: a virtual environment for investigating cognitive processes in human wayfinding. PsychNology J. 9, 137–163 (2011)

    Google Scholar 

  8. Hinterecker, T., Roser, F., Strickrodt, M., Hamburger, K.: SQUARELAND 2.0: a flexible and realistic virtual environment for investigating cognitive processes in human wayfinding. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 36 (2014)

    Google Scholar 

  9. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194 (2001)

    Article  Google Scholar 

  10. Janzen, G.: Memory for object location and route direction in virtual large-scale space. Q. J. Exp. Psychol. 59(3), 493–508 (2006)

    Article  Google Scholar 

  11. Karimpur, H., Röser, F., Hamburger, K.: Finding the return path: landmark position effects and the influence of perspective. Front. Psychol. 7, 1956 (2016)

    Google Scholar 

  12. Klippel, A., Winter, S.: Structural salience of landmarks for route directions. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 347–362. Springer, Heidelberg (2005). https://doi.org/10.1007/11556114_22

    Chapter  Google Scholar 

  13. Lovelace, K.L., Hegarty, M., Montello, D.R.: Elements of good route directions in familiar and unfamiliar environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 65–82. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_5

    Chapter  Google Scholar 

  14. Lyon, D.R., Gunzelmann, G., Gluck, K.A.: A computational model of spatial visualization capacity. Cogn. Psychol. 57(2), 122–152 (2008)

    Article  Google Scholar 

  15. Michon, P.-E., Denis, M.: When and why are visual landmarks used in giving directions? In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 292–305. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45424-1_20

    Chapter  Google Scholar 

  16. Miller, J., Carlson, L.: Selecting landmarks in novel environments. Psychon. Bull. Rev. 18(1), 184–191 (2011)

    Article  Google Scholar 

  17. Montello, D.R.: Landmarks are exaggerated. KI-Künstliche Intelligenz 31(2), 193–197 (2017)

    Article  Google Scholar 

  18. Peters, D., Wu, Y., Winter, S.: Testing landmark identification theories in virtual environments. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition 2010. LNCS (LNAI), vol. 6222, pp. 54–69. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14749-4_8

    Chapter  Google Scholar 

  19. Quesnot, T., Roche, S.: Measure of landmark semantic salience through geosocial data streams. ISPRS Int. J. Geo-Inf. 4(1), 1–31 (2014)

    Article  Google Scholar 

  20. R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). https://www.R-project.org/

  21. Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45799-2_17

    Chapter  Google Scholar 

  22. Reitter, D., Lebiere, C.: A cognitive model of spatial path-planning. Comput. Math. Organ. Theory 16(3), 220–245 (2010)

    Article  Google Scholar 

  23. Richter, K.F., Winter, S.: Landmarks, vol. 10. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-05732-3., pp. 978–983

    Book  Google Scholar 

  24. Röser, F., Hamburger, K., Knauff, M.: The giessen virtual environment laboratory: human wayfinding and landmark salience. Cogn. Process. 12(2), 209–214 (2011)

    Article  Google Scholar 

  25. Röser, F., Krumnack, A., Hamburger, K.: The influence of perceptual and structural salience. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 35 (2013)

    Google Scholar 

  26. Röser, F., Krumnack, A., Hamburger, K., Knauff, M.: A four factor model of landmark salience, a new approach. In: Krüger, A., Butz, A., Oliver, P. (eds.) Proceedings of the 11th International Conference on Cognitive Modeling (ICCM), pp. 82–87. Springer, Heidelberg (2012)

    Google Scholar 

  27. Röser, F., Hamburger, K., Krumnack, A., Knauff, M.: The structural salience of landmarks: results from an on-line study and a virtual environment experiment. J. Spat. Sci. 57(1), 37–50 (2012)

    Article  Google Scholar 

  28. Schwering, A., Krukar, J., Li, R., Anacta, V.J., Fuest, S.: Wayfinding through orientation. Spat. Cogn. Comput. 17(4), 273–303 (2017)

    Article  Google Scholar 

  29. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Advances in Child Development and Behavior, vol. 10, pp. 9–55. Elsevier (1975)

    Google Scholar 

  30. Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 37–50. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_3

    Chapter  Google Scholar 

  31. von Stülpnagel, R., Steffens, M.C.: Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control. Psychol. Res. 77(5), 555–574 (2013)

    Article  Google Scholar 

  32. Wenczel, F., Hepperle, L., von Stülpnagel, R.: Gaze behavior during incidental and intentional navigation in an outdoor environment. Spat. Cogn. Comput. 17(1–2), 121–142 (2017)

    Article  Google Scholar 

  33. Winter, B.: Linear models and linear mixed effects models in R with linguistic applications. arXiv preprint arXiv:1308.5499 (2013)

  34. Zhao, C.: Understanding human spatial navigation behaviors: a novel cognitive modeling approach. The Pennsylvania State University (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Benedikt Solf for collecting the data and his idea of including foil blocks and Karoline Greger for implementing the SQUARELAND ACT-R environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albrecht, R., von Stuelpnagel, R. (2018). Memory for Salient Landmarks: Empirical Findings and a Cognitive Model. In: Creem-Regehr, S., Schöning, J., Klippel, A. (eds) Spatial Cognition XI. Spatial Cognition 2018. Lecture Notes in Computer Science(), vol 11034. Springer, Cham. https://doi.org/10.1007/978-3-319-96385-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96385-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96384-6

  • Online ISBN: 978-3-319-96385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics