Skip to main content

The Search for Biosignatures in Martian Meteorite Allan Hills 84001

  • Chapter
  • First Online:
Biosignatures for Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

Proposed biosignatures in the ancient Allan Hills 84001 martian meteorite are most plausibly explained as abiotic features. The purported evidence of biological activity on Mars included biogenic minerals (magnetite and sulphide formed by magnetotactic and sulphate-respiring microorganisms), organic matter resulting from the decay of such organisms, microfossils, and biofilms, all physically associated with biologically mediated carbonates. The zoned carbonate globules formed by inorganic precipitation from an aqueous fluid or evaporative brine circulating within fractures in this igneous rock. A subsequent shock event partially volatilized Fe-carbonate, and its decomposition produced nanophase magnetite crystals with unusual morphologies, structures, and compositions consistent with vapour condensation. Sulphur isotopes in sulphide are unlike those in terrestrial biogenic sulphides. The organic compounds identified in ALH 84001 include polycyclic aromatic hydrocarbons, complex macromolecules, graphite, and amino acids, most of which are terrestrial, based on their carbon isotopes and stereochemistry. A small amount of the organic matter may be martian, but even that likely had an exogenic (chondritic) source. The putative microfossils were identified only by morphology, without any other supporting observations. These forms are apparently too small to represent viable organisms, which has engendered controversy about the plausibility of nanobacteria. Observations of possible fossilized biofilms are compromised by infiltration of the meteorite by terrestrial microorganisms in the Antarctic environment from which the meteorite was recovered. The controversial hypothesis that ALH 84001 contains evidence of extraterrestrial biology has mostly subsided, but it has fuelled a Mars exploration program focused on the search for life and has helped refine the criteria for the recognition of biosignatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders E (1996) Technical comment. Science 274:2119–2120

    Article  ADS  Google Scholar 

  • Bada JL, Glavin DP, McDonald GD et al (1998) A search for endogenous amino acids in Martian meteorite ALH 84001. Science 2789:362–365

    Article  ADS  Google Scholar 

  • Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc Natl Acad Sci USA 99:6551–6561

    ADS  Google Scholar 

  • Becker L, Glavin DP, Bada JL (1997) Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice. Geochim Cosmochim Acta 61:475–481

    Article  ADS  Google Scholar 

  • Becker L, Popp B, Rust T et al (1999) The origin of organic matter in the Martian meteorite ALH 84001. Earth Planet Sci Lett 167:71–79

    Article  ADS  Google Scholar 

  • Bogard DD, Garrison DH (1998) Relative abundances of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochim Cosmochim Acta 62:1829–1835

    Article  ADS  Google Scholar 

  • Borg LE, Connelly JN, Nyquist LE et al (1999) The age of the carbonates in Martian meteorite ALH 84001. Science 286:90–94

    Article  ADS  Google Scholar 

  • Bradley JP, Harvey RP, McSween HY (1996) Magnetite whiskers and platelets in ALH 84001 Martian meteorite: evidence for vapor phase growth. Geochim Cosmochim Acta 60:5149–5155

    Article  ADS  Google Scholar 

  • Bradley JP, Harvey RP, McSween HY (1997) No ‘nanofossils’ in Martian meteorite. Nature 390:454–455

    Article  ADS  Google Scholar 

  • Bradley JP, McSween HY, Harvey RP (1998) Epitaxial growth of nanophase magnetite in Martian meteorite ALH 84001: implications for biogenic mineralization. Meteorit Planet Sci 33:765–773

    Article  ADS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B et al (2001) Magnetite morphology and life on Mars. Proc Natl Acad Sci USA 98:13490–13495

    Article  ADS  Google Scholar 

  • Clayton RN, Mayeda TK (1996) Oxygen isotope studies of achondrites. Geochim Cosmochim Acta 60:1999–2017

    Article  ADS  Google Scholar 

  • Clemett SJ, Dulay MT, Gilette JS et al (1998) Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons (PAHs) in the Martian meteorite ALH 84001. Farady Discuss R Soc Chem 109:417–436

    Article  ADS  Google Scholar 

  • Corrigan CM, Harvey RP (2004) Multi-generational carbonate assemblages in Martian meteorite Allan Hills 84001: implications for nucleation, growth, and alteration. Meteorit Planet Sci 39:17–30

    Article  ADS  Google Scholar 

  • Eiler JM, Valley JW, Graham CM et al (2002) Two populations of carbonate in ALH 84001: geochemical evidence for discrimination and genesis. Geochim Cosmochim Acta 66:1285–1303

    Article  ADS  Google Scholar 

  • Eugster O, Weigel A, Polnau E (1997) Ejection times of Martian meteorites. Geochim Cosmochim Acta 61:2749–2757

    Article  ADS  Google Scholar 

  • Folk RL (1997) The possible role of nanobacteria (dwarf bacteria) in clay mineral diagenesis and the importance of careful sample preparation in high magnification SEM study. J Sediment Res 67:583–589

    Google Scholar 

  • Folk RL, Taylor LA (2002) Nannobacterial alteration of pyroxenes in Martian meteorite Allan Hills 84001. Meteorit Planet Sci 37:1057–1069

    Article  ADS  Google Scholar 

  • Friedmann EI, Wierzchos J, Ascaso C et al (2001) Chains of magnetite crystals in the meteorite ALH 84001: evidence of biologic origin. Proc Natl Acad Sci USA 98:2176–2181

    Article  ADS  Google Scholar 

  • Gibson EK, McKay DS, Thomas-Keprta KL et al (2001) Life on Mars: evaluation of the evidence within Martian meteorites ALH 84001, Nakhla, and Shergotty. Precambrian Res 106:15–34

    Article  ADS  Google Scholar 

  • Gleason JD, Kring DA, Hill DH et al (1997) Petrography and bulk chemistry of Martian orthopyroxenite ALH 84001: implications for the origin of secondary carbonates. Geochim Cosmochim Acta 61:3503–3512

    Article  ADS  Google Scholar 

  • Golden DC, Ming DW, Schwandt CS et al (2001) A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH 84001. Am Mineral 86:370–375

    Article  ADS  Google Scholar 

  • Goswami JN, Sinha N, Murty SVS et al (1997) Nuclear tracks and light noble gases in Allan Hills 84001: preatmospheric size, fall characteristics, cosmic-ray exposure duration and formation age. Meteorit Planet Sci 32:91–96

    Article  ADS  Google Scholar 

  • Grady MM, Wright IP, Douglas C et al (1994) Carbon and nitrogen in ALH84001. Meteoritics 29:469

    Google Scholar 

  • Greenwood JP, McSween HY (2001) Petrogenesis of Allan Hills 84001: constraints from impact-melted feldspathic and silica glasses. Meteorit Planet Sci 36:43–61

    Article  ADS  Google Scholar 

  • Greenwood JP, Riciputi LR, McSween HY (1997) Sulfide isotopic compositions in shergottites and ALH 84001, and possible implications for life on Mars. Geochim Cosmochim Acta 61:4449–4453

    Article  ADS  Google Scholar 

  • Greenwood JP, Mojzsis SJ, Coath CD (2000) Sulfur isotopic compositions of individual sulfides in Martian meteorite ALH 84001 and Nakhla: implications for crust-regolith exchange on Mars. Earth Planet Sci Lett 184:23–35

    Article  ADS  Google Scholar 

  • Halevy I, Fischer WW, Eiler JM (2011) Carbonates in the Martian meteorite Allan Hills 84001 formed at 18+4°C in a near-surface aqueous environment. Proc Natl Acad Sci USA 108:16895–16899

    Article  ADS  Google Scholar 

  • Harvey RP, McSween HY (1996) A possible high-temperature origin for the carbonates in the Martian meteorite ALH84001. Nature 382:49–51

    Article  ADS  Google Scholar 

  • Jull AJT, Eastoe CJ, Xue S et al (1995) Isotopic composition of carbonates in the SNC meteorites and Allan Hills 84001 and Nakhla. Meteoritics 30:311–318

    Article  ADS  Google Scholar 

  • Jull AJT, Courtney C, Jeffrey DA et al (1998) Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 279:366–369

    Article  ADS  Google Scholar 

  • Kajander EO, Çiftçioğlu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279

    Article  ADS  Google Scholar 

  • Kirkland BL, Lynch FL, Rahnis MA et al (1999) Alternative origins for nanobacteria-like objects in calcite. Geology 27:347–350

    Article  ADS  Google Scholar 

  • Kirschvink JL, Maine AT, Vali H (1997) Paleomagnetic evidence of a low-temperature origin of carbonate in the Martian meteorite ALH84001. Science 275:1629–1632

    Article  ADS  Google Scholar 

  • Knoll A, Osborne MJ (1999) Size limits of very small microorganisms. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • Kring DA, Swindle TD, Gleason JD et al (1998) Formation and relative ages of maskelynite and carbonate in ALH 84001. Geochim Cosmochim Acta 62:2155–2166

    Article  ADS  Google Scholar 

  • Lapen TJ, Righter M, Brandon AD et al (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351

    Article  ADS  Google Scholar 

  • Leshin LA, McKeegan KD, Carpenter PK et al (1998) Oxygen isotopic constraints on the genesis of carbonates from Martian meteorite ALH84001. Geochim Cosmochim Acta 62:3–13

    Article  ADS  Google Scholar 

  • Maniloff J (1997) Nannobacteria: size limits and evidence. Science 276:1776

    Article  Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keprta KL et al (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science 273:924–930

    Article  ADS  Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keprta KL et al (1997) No ‘nanofossils’ in Martian meteorite: reply. Nature 390:455–456

    Article  Google Scholar 

  • McSween HY (1997) Evidence for life in a Martian meteorite? GSA Today 7:1–6

    Google Scholar 

  • McSween HY, Harvey RP (1998) An evaporation model for formation of carbonates in the ALH84001 Martian meteorite. Int Geol Rev 40:774–783

    Article  Google Scholar 

  • Melwani Daswani M, Schwenzer SP et al (2016) Alteration minerals, fluids, and gases on early Mars: predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001. Meteorit Planet Sci 51:2154–2174

    Article  ADS  Google Scholar 

  • Mittlefehldt DW (1994) ALH 84001, a cumulate orthopyroxenite nember of the Martian meteorite clan. Meteoritics 29:214–221

    Article  ADS  Google Scholar 

  • Nealson KH (1997) The limits of life on Earth and searching for life on Mars. J Geophys Res 102:23675–23686

    Article  ADS  Google Scholar 

  • Oró J (1998) The case for life on Mars, part 1: An “open” skeptical view. BioAstron News 10:1–6

    ADS  Google Scholar 

  • Romanek CS, Grady MM, Wright IP et al (1994) Record of fluid-rock interactions on Mars from the meteorite ALH 84001. Nature 372:655–657

    Article  ADS  Google Scholar 

  • Score R, MacPherson G (1985) Macroscopic and thin section description of ALH 84001. Antarct Meteorit Newsl JSC Curator Office 8:5

    Google Scholar 

  • Scott ERD, Yamaguchi A, Krot AN (1997) Petrological evidence for shock melting of carbonates in the Martian meteorite ALH84001. Science 387:377–379

    Google Scholar 

  • Scott ERD, Krot AN, Yamaguchi A (1998) Carbonates in fractures of Martian meteorite Allan Hills 84001: petrologic evidence for impact origin. Meteorit Planet Sci 33:709–719

    Article  ADS  Google Scholar 

  • Sephton MA, Wright IP, Gilmour I et al (2002) High molecular weight organic matter in Martian meteorites. Planet Space Sci 50:711–716

    Article  ADS  Google Scholar 

  • Shearer CK, Layne GD, Papike JJ et al (1996) Sulfur isotopic systematics in altearation assemblages in Martian meteorite Allan Hills 84001. Geochim Cosmochim Acta 60:2921–2926

    Article  ADS  Google Scholar 

  • Steele A, Goddard D, Beech IB et al (1998) Atomic force microscopy imaging of fragments from the Martian meteorite ALH 84001. J Microsc 189:2–7

    Article  Google Scholar 

  • Steele A, Goddard DT, Stapleton D et al (2000) Investigations into an unknown organism on the Martian meteorite Allan Hills 84001. Meteorit Planet Sci 35:237–241

    Article  ADS  Google Scholar 

  • Steele A, Fries MD, Amundsen HEF et al (2007) Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard. Meteorit Planet Sci 42:1549–1566

    Article  ADS  Google Scholar 

  • Steele A, McCubbin FM, Fries MD et al (2012) Graphite in the Martian meteorite Allan Hills 84001. Am Mineral 97:1256–1259

    Article  ADS  Google Scholar 

  • Swindle TD, Grier JA, Burkland MK (1995) Noble gases in orthopyroxenite ALH 84001: a different kind of Martian meteorite with an atmospheric signature. Geochim Cosmochim Acta 59:793–801

    Article  ADS  Google Scholar 

  • Taylor AP, Barry JC, Webb RI (2001) Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH 84001. J Microsc 201:84–106

    Article  MathSciNet  Google Scholar 

  • Thomas-Keprta KL, McKay DS, Wentworth SJ et al (1998) Bacterial mineralization patterns in basaltic aquifers: implications for possible life in Martian meteorite ALH 84001. Geology 26:1031–1035

    Article  ADS  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL et al (2000) Elongated prismatic magnetite crystals in ALH 84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081

    Article  ADS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA et al (2001) Truncated hexa-octahedral magnetite crystals in ALH 84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    Article  ADS  Google Scholar 

  • Treiman AH (1995) A petrographic history of Martian meteorite ALH 84001: two shocks and an ancient age. Meteoritics 30:294–302

    Article  ADS  Google Scholar 

  • Treiman AH (1998) The history of Allan Hills 84001 revised: multiple shock events. Meteorit Planet Sci 33:753–764

    Article  ADS  Google Scholar 

  • Treiman AH (2003) Submicron magnetite grains and carbon compounds in Martian meteorite ALH 84001: inorganic, abiotic formation by shock and thermal metamorphism. Astrobiology 3:369–392

    Article  ADS  Google Scholar 

  • Treiman AH, Essene EJ (2011) Chemical composition of magnetite in Martian meteorite ALH 84001: revised appraisal from thermochemistry of phases in Fe-Mg-C-O. Geochim Cosmochim Acta 75:5324–5335

    Article  ADS  Google Scholar 

  • Treiman AH, Romanek CS (1998) Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: no proof of high formation temperature. Meteorit Planet Sci 33:737–742

    Article  ADS  Google Scholar 

  • Treiman AH, Amundsen HEF, Blake DF et al (2002) Hydrothermal origin for carbonate globules in Martian meteorite ALH84001: a terrestrial analogue from Spitsbergen (Norway). Earth Planet Sci Lett 204:323–332

    Article  ADS  Google Scholar 

  • Uwins P, Webb RI, Taylor AP (1998) Novel nano-organisms from Australian sandstones. Am Mineral 83:1541–1550

    Article  ADS  Google Scholar 

  • Valley JW, Eiler JM, Graham CM et al (1997) Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275:1633–1638

    Article  ADS  Google Scholar 

  • Wadhwa M, Crozaz G (1998) The igneous crystallization history of an ancient Martian meteorite from rare earth element microdistributions. Meteorit Planet Sci 33:685–692

    Article  ADS  Google Scholar 

  • Warren PH (1998) Petrologic evidence for low-temperature, possibly flood evaporatic origin of carbonates in the ALH84001 meteorite. J Geophys Res 103:16759–16773

    Article  ADS  Google Scholar 

  • Warren PH, Kallemeyn GW (1996) Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: evidence of heterogeneity, possibly time-linked, in the mantle of Mars. Meteorit Planet Sci 31:97–105

    Article  ADS  Google Scholar 

  • Weiss BP, Kirschvink JL, Baudenbacher FJ et al (2000) A low temperature transfer of ALH 84001 from Mars to Earth. Science 290:791–794

    Article  ADS  Google Scholar 

  • Westall F (1999) The nature of fossil bacteria: a guide to the search for extraterrestrial life. J Geophys Res 104:E7

    Article  Google Scholar 

  • Zolotov MY, Shock EL (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 Martian meteorite through cooling of magmatic and impact-generated gases. Meteorit Planet Sci 35:629–638

    Article  ADS  Google Scholar 

Download references

Acknowledgement

John W. Valley and M. Melwani Daswani provided helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Y. McSween Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McSween, H.Y. (2019). The Search for Biosignatures in Martian Meteorite Allan Hills 84001. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_8

Download citation

Publish with us

Policies and ethics