Skip to main content

Long Short-Term Memory Recurrent Neural Network for Stroke Prediction

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

Abstract

Electronic Healthcare Records (EHRs) describe the details about a patient’s physical and mental health, diagnosis, lab results, treatments or patient care plan and so forth. Currently, the International Classification of Diseases, 10th Revision or ICD-10 code is used for representing each patient record. The huge amount of information in these records provides insights about the diagnosis and prediction of various diseases. Various data mining techniques are used for the analysis of data deriving from these patient records. Recurrent Neural Network (RNN) is a powerful and widely used technique in machine learning and bioinformatics. This research aims at the investigation of RNN with Long Short-Term Memory (LSTM) hidden units. The empirical research is intended to evaluate the ability of LSTMs to recognize patterns in multi-label classification of cerebrovascular symptoms or stroke. First, we integrated ICD-10 code into health record, as well as other potential risk factors within EHRs into the pattern and model for prediction. Next, we modelled the effectiveness of LSTMs for prediction of stroke based on healthcare records. The results show several strong baselines that include accuracy, recall, and F1 measure score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deo, R.C.: Machine learning in medicine. Circulation 132, 1920 (2015)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  3. Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet 377, 1693–1702 (2011)

    Article  Google Scholar 

  4. Khosla, A., Cao, Y., Lin, C.C.-Y., Chiu, H.-K., Hu, J., Lee, H.: An integrated machine learning approach to stroke prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 183–192. ACM, Washington, D.C. (2010)

    Google Scholar 

  5. Leira, E.C., Ku-Chou, C., Davis, P.H., Clarke, W.R., Woolson, R.F., Hansen, M.D., Adams Jr., H.P.: Can we predict early recurrence in acute stroke? Cerebrovasc. Dis. 18, 139–144 (2004)

    Article  Google Scholar 

  6. Cooke, C.R., Joo, M.J., Anderson, S.M., Lee, T.A., Udris, E.M., Johnson, E., Au, D.H.: The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease. BMC Health Serv. Res. 11, 37 (2011)

    Article  Google Scholar 

  7. Ried, L.D.P., Cameon, R.M.S., Jia, H.P., Findley, K., Hinojosa, M.S.P., Wang, X.P., Tueth, M.J.M.D.: Identifying veterans with acute strokes with high-specificity ICD-9 algorithm with VA automated records and Medicare claims data: a more complete picture. J. Rehabil. Res. Dev. 44, 665–673 (2007)

    Article  Google Scholar 

  8. Scheurer, D.B., Hicks, L.S., Cook, E.F., Schnipper, J.L.: Accuracy of ICD-9 coding for Clostridium difficile infections: a retrospective cohort. Epidemiol. Infect. 135, 1010–1013 (2007)

    Article  Google Scholar 

  9. WHO: ICD10: International Statistical Classification of Disease and Related Health Tenth Revision, vol. 2. World Health Organization, Geneva (2004)

    Google Scholar 

  10. Gulshan, V., Peng, L., Coram, M., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)

    Article  Google Scholar 

  11. Stier, N., Vincent, N., Liebeskind, D., Scalzo, F.: Deep learning of tissue fate features in acute ischemic stroke. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2015, pp. 1316–1321 (2015)

    Google Scholar 

  12. Liang, Z., Zhang, G., Huang, J.X., Hu, Q.V.: Deep learning for healthcare decision making with EMRs. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 556–559 (2014)

    Google Scholar 

  13. Hammerla, N.Y., Fisher, J., Andras, P., Rochester, L., Walker, R., Plötz, T.: PD disease state assessment in naturalistic environments using deep learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1742–1748 (2015)

    Google Scholar 

  14. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2327–2333 (2015)

    Google Scholar 

  15. Ding, X., Zhang, Y., Liu, T., Duan, J.: Using structured events to predict stock price movement: an empirical investigation. In: EMNLP, pp. 1415–1425 (2014)

    Google Scholar 

  16. Goldstein, L.B., Adams, R., Becker, K., Furberg, C.D., Gorelick, P.B., Hademenos, G., Hill, M., Howard, G., Howard, V.J., Jacobs, B., Levine, S.R., Mosca, L., Sacco, R.L., Sherman, D.G., Wolf, P.A., del Zoppo, G.J.: Members: primary prevention of ischemic stroke. Circulation 103, 163–182 (2001)

    Article  Google Scholar 

  17. Goldstein, L.B., Adams, R., Alberts, M.J., Appel, L.J., Brass, L.M., Bushnell, C.D., Culebras, A., DeGraba, T.J., Gorelick, P.B., Guyton, J.R., Hart, R.G., Howard, G., Kelly-Hayes, M., Nixon, J.V., Sacco, R.L.: Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke 37, 1583–1633 (2006)

    Article  Google Scholar 

  18. The American Heart Association: Comparison of 12 risk stratification schemes to predict stroke in patients with nonvalvular atrial fibrillation. Stroke 39, 1901–1910 (2008)

    Google Scholar 

  19. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471 (2000)

    Article  Google Scholar 

  20. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 3, 115–143 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association, Singapore, pp. 338–342 (2014)

    Google Scholar 

  22. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28, 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was granted the ethics approval by University of Technology Sydney, Australia (The ethics approval number UTS HREC ETH17-1406). Additionally, without support from the Department of Medical Services (affiliated with Ministry of Public Health of Thailand) and Office of Educational Affairs (affiliated with Royal Thai Embassy to Australia), the research would not have been accomplished. With this acknowledgement, we would like to express our sincere appreciation to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattanapong Chantamit-o-pas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chantamit-o-pas, P., Goyal, M. (2018). Long Short-Term Memory Recurrent Neural Network for Stroke Prediction. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics