Skip to main content

Selenium Metabolism, Regulation, and Sex Differences in Mammals

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Selenium is an essential trace element in mammals, which is closely related to sulfur in respect of chemistry, catalysis, and metabolism. Selenium is often mentioned in the context of cancer, immunity, brain development, and cardiovascular physiology. Most of the beneficial effects of selenium are expected to come from the pool of selenoproteins, which are involved in redox biology and homeostasis. Many chemical species of selenium can enter the organism to be transformed into selenide, the central metabolite for selenoprotein synthesis. In this chapter, the various selenium species as well as the several metabolic pathways leading to selenide are described, and a particular highlight is given on sexual dimorphic regulation of selenium metabolism and selenoprotein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APOER2:

Apolipoprotein E receptor-2 (also referred to as LRP2)

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

H2Se:

Hydrogen selenide

LRP8:

Megalin

MSeA:

Methylseleninic acid (also referred to as mathaneseleninic acid)

PLP:

Pyridoxal 5′-phosphate

SCL:

Selenocysteine ß-lyase (also referred to as Scly)

Sec:

l-Selenocysteine, selenocysteine (also referred to as SeCys)

SELENOP:

Selenoprotein P, SEPP1

SeMeSeCys:

Selenomethyl-selenocysteine

SeMet:

l-Selenomethionine, selenomethionine

TXN:

Thioredoxin

TXNRD:

Thioredoxin reductase

References

  • Bal W, Sokolowska M, Kurowska E, Faller P. Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta. 2013;1830(12):5444–55.

    Article  CAS  Google Scholar 

  • Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in cancer therapy: an overview. Adv Cancer Res. 2017;136:259–302.

    Article  Google Scholar 

  • Bierla K, Szpunar J, Lobinski R. Biological selenium species and selenium speciation in biological samples. In: Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN, editors. Selenium: its molecular biology and role in human health. 4th ed. New York, NY: Springer Science+Business Media, LLC; 2016. p. 413–24. https://doi.org/10.1007/978-3-319-41283-2_35.

    Chapter  Google Scholar 

  • Bulteau A-L, Chavatte L. Update on selenoprotein biosynthesis. Antioxid Redox Signal. 2015;23(10):775–94.

    Article  CAS  Google Scholar 

  • Burk RF, Hill KE. Regulation of selenium metabolism and transport. Annu Rev Nutr. 2015;35:109–34.

    Article  CAS  Google Scholar 

  • Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ. Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem. 2014;289(14):9662–74. doi:M113.540682 [pii]

    Article  CAS  Google Scholar 

  • Cabrera C, Lorenzo ML, De Mena C, Lopez MC. Chromium, copper, iron, manganese, selenium and zinc levels in dairy products: in vitro study of absorbable fractions. Int J Food Sci Nutr. 1996;47(4):331–9.

    Article  CAS  Google Scholar 

  • Callejon-Leblic B, Rodriguez-Moro G, Garcia-Barrera T, Gomez-Ariza JL. Simultaneous speciation of selenoproteins and selenometabolites in plasma and serum. Methods Mol Biol (Clifton, NJ). 2018;1661:163–75.

    Article  CAS  Google Scholar 

  • Carlson BA, Lee BJ, Tsuji PA, Tobe R, Park JM, Schweizer U, Gladyshev VN, Hatfield DL. Selenocysteine tRNA [Ser]Sec: from nonsense suppressor tRNA to the quintessential constituent in selenoprotein biosynthesis. In: Hatfield DL, Schweizer U, Tsuji PA, Gladyshev VN, editors. Selenium: its molecular biology and role in human health. 4th ed. New York, NY: Springer Science+Business Media, LLC; 2016. p. 3–12.

    Chapter  Google Scholar 

  • Collins R, Johansson A-L, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarstrom M, Flores A, Schuler H, Schiavone LH, Brzezinski P, Arner ESJ, Hogbom M. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS One. 2012;7(1):e30581.

    Article  CAS  Google Scholar 

  • Cupp-Sutton KA, Ashby MT. Biological chemistry of hydrogen selenide. Antioxidants (Basel). 2016;5(4):E42.

    Article  Google Scholar 

  • Diaz-Alarcon JP, Navarro-Alarcon M, Lopez-Garcia de la Serrana H, Lopez-Martinez MC. Determination of selenium in meat products by hydride generation atomic absorption spectrometry-selenium levels in meat, organ meats, and sausages in Spain. J Agric Food Chem. 1996;44(6):1494–7. https://doi.org/10.1021/jf950702l.

    Article  CAS  Google Scholar 

  • Driscoll DM, Copeland PR. Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr. 2003;23:17–40.

    Article  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011;14(7):1337–83.

    Article  CAS  Google Scholar 

  • Fordyce F. Selenium geochemistry and health. Ambio. 2007;36(1):94–7.

    Article  CAS  Google Scholar 

  • Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol. 2002;22(11):3565–76.

    Article  CAS  Google Scholar 

  • Hesketh J. Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Annu Rev Nutr. 2008;28:157–77.

    Article  CAS  Google Scholar 

  • Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF. Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem. 2003;278(16):13640–6.

    Article  CAS  Google Scholar 

  • Hoefig CS, Renko K, Kohrle J, Birringer M, Schomburg L. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem. 2011;22(10):945–55. https://doi.org/10.1016/j.jnutbio.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  • Kasaikina MV, Kravtsova MA, Lee BC, Seravalli J, Peterson DA, Walter J, Legge R, Benson AK, Hatfield DL, Gladyshev VN. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 2011;25(7):2492–9.

    Article  CAS  Google Scholar 

  • Klein M, Ouerdane L, Bueno M, Pannier F. Identification in human urine and blood of a novel selenium metabolite, Se-methylselenoneine, a potential biomarker of metabolization in mammals of the naturally occurring selenoneine, by HPLC coupled to electrospray hybrid linear ion trap-orbital ion trap MS. Metallomics: Integr Biometal Sci. 2011;3(5):513–20.

    Article  CAS  Google Scholar 

  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–77. https://doi.org/10.1152/physrev.00039.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latrèche L, Chavatte L. Selenium incorporation into selenoproteins, implications in human health. Metal Ions Biol Med. 2008;X:731–7.

    Google Scholar 

  • Letsiou S, Nomikos T, Panagiotakos DB, Pergantis SA, Fragopoulou E, Pitsavos C, Stefanadis C, Antonopoulou S. Gender-specific distribution of selenium to serum selenoproteins: associations with total selenium levels, age, smoking, body mass index, and physical activity. Biofactors. 2014;40(5):524–35.

    Article  CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta. 2009;1790(11):1424–8. https://doi.org/10.1016/j.bbagen.2009.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One. 2012;7(3):e33066. https://doi.org/10.1371/journal.pone.0033066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marro N. The 1994 Australian market basket survey. Camberra: Australian Government Publishing Service; 1996.

    Google Scholar 

  • Ogawa Y, Nishikawa M, Toyoda N, Yonemoto T, Gondou A, Inada M. Age- and sex-related changes in type-1 iodothyronine deiodinase messenger ribonucleic acid in rat liver and kidney. Horm Metab Res. 1999;31(5):295–9.

    Article  CAS  Google Scholar 

  • Ohta Y, Kobayashi Y, Konishi S, Hirano S. Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats. Chem Res Toxicol. 2009;22(11):1795–801.

    Article  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem. 2007;282(16):12290–7.

    Article  CAS  Google Scholar 

  • Panigati M, Falciola L, Mussini P, Beretta G, Fancino RM. Determination of selenium in Italian rices by differential pulse cathodic stripping voltammetry. Food Chem. 2007;105:1091–8. https://doi.org/10.1016/j.foodchem.2007.02.002.

    Article  CAS  Google Scholar 

  • Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9(7):775–806.

    Article  CAS  Google Scholar 

  • Pappa EC, Pappas AC, Surai PF. Selenium content in selected foods from the Greek market and estimation of the daily intake. Sci Total Environ. 2006;372(1):100–8.

    Article  CAS  Google Scholar 

  • Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta. 2009;634(2):135–52.

    Article  CAS  Google Scholar 

  • Pitts MW, Kremer PM, Hashimoto AC, Torres DJ, Byrns CN, Williams CS, Berry MJ. Competition between the brain and testes under selenium-compromised conditions: insight into sex differences in selenium metabolism and risk of neurodevelopmental disease. J Neurosci. 2015;35(46):15326–38.

    Article  CAS  Google Scholar 

  • Pyrzynska K. Determination of selenium species in environmental samples. Microchim Acta. 2002;140(1):55–62.

    Article  CAS  Google Scholar 

  • Ramoutar RR, Brumaghim JL. Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem Biophys. 2010;58(1):1–23.

    Article  CAS  Google Scholar 

  • Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.

    Article  CAS  Google Scholar 

  • Read R, Bellew T, Yang JG, Hill KE, Palmer IS, Burk RF. Selenium and amino acid composition of selenoprotein P, the major selenoprotein in rat serum. J Biol Chem. 1990;265(29):17899–905.

    CAS  PubMed  Google Scholar 

  • Rebsch CM, Penna FJ 3rd, Copeland PR. Selenoprotein expression is regulated at multiple levels in prostate cells. Cell Res. 2006;16(12):940–8.

    Article  CAS  Google Scholar 

  • Riese C, Michaelis M, Mentrup B, Gotz F, Kohrle J, Schweizer U, Schomburg L. Selenium-dependent pre- and posttranscriptional mechanisms are responsible for sexual dimorphic expression of selenoproteins in murine tissues. Endocrinology. 2006;147(12):5883–92.

    Article  CAS  Google Scholar 

  • Schomburg L. Sex-specifi c differences in biological effects and metabolism of selenium. In: Hatfield DLSU, Tsuji PA, Gladyshev VN, editors. Selenium: its molecular biology and role in human health. 4th ed. New York, NY: Springer Science+Business Media, LLC; 2016. p. 377–88.

    Chapter  Google Scholar 

  • Schomburg L, Schweizer U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta. 2009;1790(11):1453–62.

    Article  CAS  Google Scholar 

  • Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M, Kohrle J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem J. 2003;370. (Pt 2:397–402.

    Article  CAS  Google Scholar 

  • Schomburg L, Riese C, Renko K, Schweizer U. Effect of age on sexually dimorphic selenoprotein expression in mice. Biol Chem. 2007;388(10):1035–41.

    Article  CAS  Google Scholar 

  • Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic Biol Med. 1993;14(3):313–23.

    Article  CAS  Google Scholar 

  • Smrkolj P, Pograjc L, Hlastan-Ribic C, Stibilj V. Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem. 2005;90:691–7. https://doi.org/10.1016/j.foodchem.2004.04.028.

    Article  CAS  Google Scholar 

  • Sonet J, Bulteau A-L, Chavatte L. Selenium and selenoproteins in human health and diseases. In: Michalke B, editor. Metallomics: analytical techniques and speciation methods: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 364–81. https://doi.org/10.1002/9783527694907.ch13.

    Chapter  Google Scholar 

  • Suzuki KT, Somekawa L, Kurasaki K, Suzuki N. Simultaneous tracing of 76Se-selenite and 77Se-selenomethionine by absolute labeling and speciation. Toxicol Appl Pharmacol. 2006a;217(1):43–50.

    Article  CAS  Google Scholar 

  • Suzuki KT, Somekawa L, Suzuki N. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats. Toxicol Appl Pharmacol. 2006b;216(2):303–8.

    Article  CAS  Google Scholar 

  • Taylor JB, Finley JW, Caton JS. Effect of the chemical form of supranutritional selenium on selenium load and selenoprotein activities in virgin, pregnant, and lactating rats. J Anim Sci. 2005;83(2):422–9.

    Article  CAS  Google Scholar 

  • Tinggi U. Determination of selenium in meat products by hydride generation atomic absorption spectrophotometry. J AOAC Int. 1999;82(2):364–7.

    CAS  PubMed  Google Scholar 

  • Turanov AA, Xu X-M, Carlson BA, Yoo M-H, Gladyshev VN, Hatfield DL. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr. 2011;2(2):122–8.

    Article  CAS  Google Scholar 

  • Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN. Regulation of selenocysteine content of human selenoprotein P by dietary selenium and insertion of cysteine in place of selenocysteine. PLoS One. 2015;10(10):e0140353.

    Article  Google Scholar 

  • USDA USDoA Nutrient database for standard reference release 13. Nutrient datalaboratory homepage on the World Wide Web. 1999. http://www.nalusdagov/fnic/foodcomp/Data/SR13/sr13html

  • Vesper DJ, Roy M, Rhoads CJ. Selenium distribution and mode of occurrence in the Kanawha Formation, southern West Virginia, U.S.A. Int J Coal Geol. 2008;73(3):237–49.

    Article  CAS  Google Scholar 

  • Whanger PD. Selenium and its relationship to cancer: an update. Br J Nutr. 2004;91(1):11–28.

    Article  CAS  Google Scholar 

  • Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL. Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc Natl Acad Sci U S A. 2010;107(50):21430–4.

    Article  CAS  Google Scholar 

  • Yamashita Y, Yamashita M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J Biol Chem. 2010;285(24):18134–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ENS de Lyon (Emerging project to LC), the CNRS (ATIP program to LC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Chavatte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vindry, C., Ohlmann, T., Chavatte, L. (2018). Selenium Metabolism, Regulation, and Sex Differences in Mammals. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_5

Download citation

Publish with us

Policies and ethics