Skip to main content

Modelling and Experimental Analysis Two-Wheeled Self Balance Robot Using PID Controller

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

This research is aimed to design and implement Proportional Integral Derivative (PID) controller on Two-wheeled self-balance (TWSB) robot. The PID is used for the purpose of balancing the robot to stand still at upright position and to receive command via Bluetooth to follow the desired trajectory smoothly. The dynamic model of TWSB robot was developed using Lagrangian method. The PID gains were tuned until the optimum values are achieved. The Arduino based PID-controller was implemented on the TWSB robot in real world experiment. The experimental result shows the effectiveness of the proposed controller for stabilization and trajectory tracking control of TWSB robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raibert, M.H.: Legged Robots That Balance. MIT Press, Cambridge (1986)

    MATH  Google Scholar 

  2. Hamza, M.F., Yap, H.J., Choudhury, I.A.: Genetic algorithm and particle swarm optimization based cascade interval type 2 fuzzy PD controller for rotary inverted pendulum system. Math. Probl. Eng. 2015 (2015)

    Google Scholar 

  3. Tzafestas, S.G.: Introduction to Mobile Robot Control. Elsevier, New York (2013)

    Google Scholar 

  4. Ghani, N.A., Yatim, N.M., Azmi, N.A.: Comparative assessment for two wheels inverted pendulum mobile robot using robust control. In: 2010 International Conference on Control Automation and Systems (ICCAS), pp. 562–567. IEEE, October 2010

    Google Scholar 

  5. Wu, J., Zhang, W.: Design of fuzzy logic controller for two-wheeled self-balancing robot. In: 2011 6th International Forum on Strategic Technology (IFOST), vol. 2, pp. 1266–1270. IEEE, August 2011

    Google Scholar 

  6. Fierro, R., Lewis, F.L., Lowe, A.: Hybrid control for a class of underactuated mechanical systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(6), 649–654 (1999)

    Article  Google Scholar 

  7. Juang, H.S., Lurrr, K.Y.: Design and control of a two-wheel self-balancing robot using the arduino microcontroller board. In: 2013 10th IEEE International Conference on Control and Automation (ICCA), pp. 634–639. IEEE, June 2013

    Google Scholar 

  8. Grasser, F.: D’arrigo, A., Colombi, S., Rufer, A.C.: JOE: a mobile, inverted pendulum. IEEE Trans. Ind. Electron. 49(1), 107–114 (2002)

    Article  Google Scholar 

  9. Akesson, J., Blomdell, A., Braun, R.: Design and control of YAIP—an inverted pendulum on two wheels robot. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, pp. 2178–2183. IEEE, October 2006

    Google Scholar 

  10. Anderson, D.P.: NBot Balancing Robot, a two wheel balancing robot. 19 May 2003 [200-07-10] (2003). http://www.geolog.smu.edu/~dpa-www/robo/nbot/index.html

  11. Huang, J., Guan, Z.H., Matsuno, T., Fukuda, T., Sekiyama, K.: Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Trans. Rob. 26(4), 750–758 (2010)

    Article  Google Scholar 

  12. Bloch, A.M., Leonard, N.E., Marsden, J.E.: Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 1, pp. 500–505. IEEE (1999)

    Google Scholar 

  13. Fantoni, I., Lozano, R., Spong, M.W.: Energy based control of the pendubot. IEEE Trans. Autom. Control 45(4), 725–729 (2000)

    Article  MathSciNet  Google Scholar 

  14. Wu, T.S., Karkoub, M., Weng, C.C., Yu, W.S.: Trajectory tracking for uncertainty time delayed-state self-balancing train vehicles using observer-based adaptive fuzzy control. Inf. Sci. 324, 1–22 (2015)

    Article  Google Scholar 

  15. Fang, J., Liu, J.Y., Li, W.: Two-wheeled self-balancing robot systems using fuzzy immune algorithm. In: Advanced Materials Research, vol. 912, pp. 1037–1040. Trans Tech Publications (2014)

    Article  Google Scholar 

  16. Short, A.R., Sayidmarie, O.K., Agouri, S.A., Tokhi, M.O., Goher, K.M., Almeshal, A.: Real time PID control of a two-wheeled robot. In: Adaptive Mobile Robotics, pp. 73–80. World Scientific (2012)

    Chapter  Google Scholar 

  17. Valencia, J.A.B., Pasaye, J.J.R., Bernai, R.G.: Instrumentation and wireless control for the self-balancing mobile robot on two wheels. In: 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–5. IEEE, November 2014

    Google Scholar 

  18. Tsai, C.C., Tsai, C.H.: Adaptive robust motion control using fuzzy wavelet neural networks for uncertain electric two-wheeled robotic vehicles. In: 2013 International Conference on System Science and Engineering (ICSSE), pp. 229–234. IEEE, July 2013

    Google Scholar 

  19. Goher, K.M., Tokhi, M.O.: Modeling and control of a two wheeled machine: a genetic algorithm-based optimization approach. J. Sel. Areas Robot. Control (JSRC), 17–22 (2010)

    Google Scholar 

  20. Tsai, C.C., Lin, S.C., Lin, B.C.: Intelligent adaptive motion control using fuzzy basis function networks for self-balancing two-wheeled transporters. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–6. IEEE, July 2010

    Google Scholar 

  21. Jamil, O., Jamil, M., Ayaz, Y., Ahmad, K.: Modeling, control of a two-wheeled self-balancing robot. In: 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), pp. 191–199. IEEE, April 2014

    Google Scholar 

  22. Wasif, A., Raza, D., Rasheed, W., Farooq, Z., Ali, S.Q.: Design and implementation of a two wheel self-balancing robot with a two level adaptive control. In: ICDIM, pp. 187–193, September 2013

    Google Scholar 

  23. Isa, A.I., Hamza, M.F.: Effect of sampling time on PID controller design for a heat exchanger system. In: 2014 IEEE 6th International Conference on Adaptive Science and Technology (ICAST), pp. 1–8. IEEE, October 2014

    Google Scholar 

  24. Magaji, N., Hamza, M.F., Dan-Isa, A.: Comparison of GA and LQR tuning of static VAR compensator for damping oscillations. Int. J. Adv. Eng. Technol. 2, 594 (2012)

    Google Scholar 

  25. Hamza, M.F., Yap, H.J., Choudhury, I.A.: Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control. Neural Comput. Appl. 1–21 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Fatihu Hamza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zimit, A.Y., Yap, H.J., Hamza, M.F., Siradjuddin, I., Hendrik, B., Herawan, T. (2018). Modelling and Experimental Analysis Two-Wheeled Self Balance Robot Using PID Controller. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics