Skip to main content

Solving the Gene Duplication Feasibility Problem in Linear Time

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

The gene duplication model, which has been pioneered by Goodman et al. nearly 40 years ago, is widely-used for resolving the discordance between the evolutionary history of a gene family (gene tree), and the species tree through which this family has evolved. This discordance is explained by reconciling the gene tree with postulated gene duplications that have occurred while the gene tree has evolved along the edges of the species tree, such that the reconciled tree can be embedded into the species tree. Today, for many gene families lower bounds on the number of gene duplications that have occurred along each edge in the species tree can be derived, for example, from known genome duplications. Here, we augment the gene duplication model by using a species tree for the reconciliation whose edges are decorated with such lower bounds, called a (duplication) scenario. A scenario is feasible for a gene family under consideration if there exists a reconciled gene tree for this family whose embedding into the species tree satisfies the lower bounds of the scenario. Non-feasibility of a credible scenario for a gene family can provide a strong indication that this family might not be well-resolved, and identifying well-resolved gene families is a challenging task in evolutionary biology. Here, we provide a linear time algorithm that decides whether a scenario is not feasible when provided a gene family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. USA 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  2. Altenhoff, A.M., Dessimoz, C.: Inferring Orthology and Paralogy, pp. 259–279. Humana Press, Totowa (2012)

    Google Scholar 

  3. Arvestad, L., Berglund, A.C., Lagergren, J., Sennblad, B.: Bayesian gene/species tree reconciliation and orthology analysis using MCMC. Bioinformatics 19(suppl1), 7–15 (2003)

    Article  Google Scholar 

  4. Bininda-Emonds, O.R. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Computational Biology, vol. 4. Springer, Heidelberg (2004). https://doi.org/10.1007/978-1-4020-2330-9

    Book  MATH  Google Scholar 

  5. Blanc, G., Wolfe, K.H.: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7), 1667–1678 (2004)

    Article  Google Scholar 

  6. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theor. Comp. Sci. 347, 36–53 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution. Computational Biology, vol. 19, pp. 47–62. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5298-9_4

    Chapter  Google Scholar 

  8. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)

    Article  Google Scholar 

  9. Eulenstein, O., Huzurbazar, S., Liberles, D.: Reconciling phylogenetic trees. In: Evolution After Gene Duplication. John Wiley (2010)

    Google Scholar 

  10. Eulenstein, O.: Vorhersage von Genduplikationen und deren Entwicklung in der Evolution. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany (1998)

    Google Scholar 

  11. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland (2004)

    Google Scholar 

  12. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)

    Article  Google Scholar 

  13. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic networks. Genome Biol. Evol. 3, 23–35 (2011)

    Article  Google Scholar 

  14. Ihara, K., Umemura, T., Katagiri, I., Kitajima-Ihara, T., Sugiyama, Y., Kimura, Y., Mukohata, Y.: Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J. Mol. Biol. 285(1), 163–74 (1999)

    Article  Google Scholar 

  15. Kamneva, O.K., Knight, S.J., Liberles, D.A., Ward, N.L.: Analysis of genome content evolution in PVC bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol. Evol. 4(12), 1375–1390 (2012)

    Article  Google Scholar 

  16. Kamneva, O.K., Ward, N.L.: Reconciliation approaches to determining HGT, duplications, and losses in gene trees, Chap. 9. In: Michael Goodfellow, I.S., Chun, J. (eds.) New Approaches to Prokaryotic Systematics, Methods in Microbiology, vol. 41, pp. 183–199. Academic Press (2014)

    Google Scholar 

  17. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)

    Article  Google Scholar 

  18. Page, R.D., Cotton, J.: Vertebrate phylogenomics: reconciled trees and gene duplications. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)

    Google Scholar 

  19. Renny-Byfield, S., Wendel, J.F.: Doubling down on genomes: polyploidy and crop plants. Am. J. Bot. 101(10), 1711–1725 (2014)

    Article  Google Scholar 

  20. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J. Comput. Biol. 4(2), 177–187 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Eulenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markin, A., Vadali, V.S.K.T., Eulenstein, O. (2018). Solving the Gene Duplication Feasibility Problem in Linear Time. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics