Skip to main content

Consistent Dictionary Learning for Signal Declipping

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

Clipping, or saturation, is a common nonlinear distortion in signal processing. Recently, declipping techniques have been proposed based on sparse decomposition of the clipped signals on a fixed dictionary, with additional constraints on the amplitude of the clipped samples. Here we propose a dictionary learning approach, where the dictionary is directly learned from the clipped measurements. We propose a soft-consistency metric that minimizes the distance to a convex feasibility set, and takes into account our knowledge about the clipping process. We then propose a gradient descent-based dictionary learning algorithm that minimizes the proposed metric, and is thus consistent with the clipping measurement. Experiments show that the proposed algorithm outperforms other dictionary learning algorithms applied to clipped signals. We also show that learning the dictionary directly from the clipped signals outperforms consistent sparse coding with a fixed dictionary.

L. Rencker—The research leading to these results has received funding from the European Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under grant agreement no 642685 MacSeNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An analysis sparsity version of (5) was also proposed in [6], which proved to be computationally more tractable. In this paper we focus on the synthesis sparsity model, and leave the analysis sparsity counterpart for future work.

  2. 2.

    The MATLAB code and some examples are available at http://www.cvssp.org/Personal/LucasRencker/software.html.

References

  1. Janssen, A., Veldhuis, R.N., Vries, L.B.: Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes. IEEE Trans. Acoust. Speech Signal Process. 34(2), 317–330 (1986)

    Article  Google Scholar 

  2. Abel, J.S., Smith, J.O.: Restoring a clipped signal. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, pp. 1745–1748 (1991)

    Google Scholar 

  3. Godsill, S.J., Wolfe, P.J., Fong, W.N.: Statistical model-based approaches to audio restoration and analysis. J. New Music Res. 30(4), 323–338 (2001)

    Article  Google Scholar 

  4. Adler, A., Emiya, V., Jafari, M., Elad, M., Gribonval, R., Plumbley, M.D.: Audio inpainting. IEEE Trans. Audio Speech Lang. Process. 20(3), 922–932 (2012)

    Article  Google Scholar 

  5. Adler, A., Emiya, V., Jafari, M.G., Elad, M., Gribonval, R., Plumbley, M.D.: A constrained matching pursuit approach to audio declipping. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 329–332 (2011)

    Google Scholar 

  6. Kitić, S., Bertin, N., Gribonval, R.: Sparsity and cosparsity for audio declipping: a flexible non-convex approach. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 243–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22482-4_28

    Chapter  Google Scholar 

  7. Mansour, H., Saab, R., Nasiopoulos, P., Ward, R.: Color image desaturation using sparse reconstruction. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 778–781 (2010)

    Google Scholar 

  8. Defraene, B., Mansour, N., Hertogh, S.D., van Waterschoot, T., Diehl, M., Moonen, M.: Declipping of audio signals using perceptual compressed sensing. IEEE Trans. Audio Speech Lang. Process. 21(12), 2627–2637 (2013)

    Article  Google Scholar 

  9. Foucart, S., Needham, T.: Sparse recovery from saturated measurements. Inf. Inference J. IMA 6(2), 196–212 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  11. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming (2008)

    Google Scholar 

  12. Kitić, S., Jacques, L., Madhu, N., Hopwood, M.P., Spriet, A., Vleeschouwer, C.D.: Consistent iterative hard thresholding for signal declipping. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5939–5943, May 2013

    Google Scholar 

  13. Siedenburg, K., Kowalski, M., Dörfler, M.: Audio declipping with social sparsity. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, pp. 1577–1578, May 2014

    Google Scholar 

  14. Ozerov, A., Bilen, Ç., Pérez, P.: Multichannel audio declipping. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 659–663 (2016)

    Google Scholar 

  15. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  16. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  17. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 2443–2446 (1999)

    Google Scholar 

  18. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  19. Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing. Found. Trends Comput. Graph. Vis. 8(2–3), 85–283 (2014)

    Article  Google Scholar 

  20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  21. Bonnans, J.F., Shapiro, A.: Optimization problems with perturbations: a guided tour. SIAM Rev. 40(2), 228–264 (1998)

    Article  MathSciNet  Google Scholar 

  22. Danskin, J.M.: The Theory of Max-Min and its Application to Weapons Allocation Problems. Ökonometrie und Unternehmensforschung. Springer, Heidelberg (1967). https://doi.org/10.1007/978-3-642-46092-0

    Book  MATH  Google Scholar 

  23. Holmes, R.B.: Smoothness of certain metric projections on Hilbert space. Trans. Am. Math. Soc. 184, 87–100 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Rencker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rencker, L., Bach, F., Wang, W., Plumbley, M.D. (2018). Consistent Dictionary Learning for Signal Declipping. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics