Skip to main content

Matching Games for 5G Networking Paradigms

  • Chapter
  • First Online:
Game Theory for Networking Applications

Abstract

The proliferation of novel devices and applications in the current cellular networks has forced the network operators to transform their resource allocation operations from centralized to distributed operations. This chapter discusses a novel framework based on matching games that operates in a distributed manner for future wireless networks. Moreover, this chapter also builds a bridge between matching games and resource allocation for novel 5G networking paradigms. Furthermore, the readers are also exposed to the potential challenges, key solution concepts, and algorithmic details of matching games for these 5G networking paradigms. Finally, this chapter also discusses the implementation details of matching games for these paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One resource corresponds to one subcarrier or subchannel of the LTE network [2].

  2. 2.

    InPs belong to different vendors that own orthogonal frequency channels through administrative licensing.

  3. 3.

    \(q_{m_n}\) represents the available channels of InP-BS n.

  4. 4.

    The quota q k is set to two users per clusters as we assume two classes.

References

  1. 3GPP: Evolved universal terrestrial radio access (E-UTRA): physical layer procedures, Release 11. Technical Report TS 36.213 (2012)

    Google Scholar 

  2. Abdelnasser, A., Hossain, E., Kim, D.I.: Tier-aware resource allocation in OFDMA macrocell-small cell networks. IEEE Trans. Commun. 63(3), 695–710 (2015)

    Article  Google Scholar 

  3. Ali, M.S., Tabassum, H., Hossain, E.: Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access 4, 6325–6343 (2016)

    Google Scholar 

  4. Alliance, N.G.M.N.: 5G white paper. Next generation mobile networks, White Paper (2015)

    Google Scholar 

  5. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Chen, Y., Zhang, J., Wu, K., Zhang, Q.: TAMES: a truthful double auction for multi-demand heterogeneous spectrums. IEEE Trans. Parallel Distrib. Syst. 25(11), 3012–3024 (2014)

    Article  Google Scholar 

  8. Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper (2017). Available http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html. Cited 28 Mar 2017

  9. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., Xiong, C., Yao, J.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

    Article  Google Scholar 

  10. Di, B., Song, L., Li, Y.: Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Trans. Wirel. Commun. 15(11), 7686–7698 (2016)

    Article  Google Scholar 

  11. Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching. Theor. Econ. 1, 233–273 (2006)

    Google Scholar 

  12. Elshaer, H., Boccardi, F., Dohler, M., Irmer, R.: Downlink and uplink decoupling: a disruptive architectural design for 5G networks. In: IEEE Global Communications Conference (GLOBECOM), Austin (2014)

    Google Scholar 

  13. Fu, F., Kozat, U.C.: Stochastic game for wireless network virtuazlization. IEEE/ACM Trans. Networking 21(1), 84–97 (2013)

    Article  Google Scholar 

  14. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  15. Gu, Y., Saad, W., Bennis, M., Debbah, M., Han, Z.: Matching theory for future wireless networks: fundamentals and applications. IEEE Commun. Mag. 53(5), 52–59 (2015)

    Article  Google Scholar 

  16. Hamidouche, K., Saad, W., Debbah, M.: Multi-game framework for harmonized LTE-U and WiFi coexistence over unlicensed bands. IEEE Wirel. Commun. Mag. 23(6), 62–69 (2016)

    Article  Google Scholar 

  17. Han, Z., Gu, Y., Saad, W.: Matching Theory for Wireless Networks. Springer, Cham (2017)

    Book  Google Scholar 

  18. Hausken, K., Cressman, R.: Formalization of multi-level games. Int. Game Theory Rev. 6(02), 195–221 (2004)

    Article  MathSciNet  Google Scholar 

  19. Ho, T.M., Tran, N.H., Kazmi, S.A., Hong, C.S.: Dynamic pricing for resource allocation in wireless network virtualization: a Stackelberg game approach. In: The International Conference on Information Networking (ICOIN), Da Nang (2017)

    Google Scholar 

  20. Ho, T.M., Tran, N.H., Kazmi, S.A., Han, Z., Hong, C.S.: Wireless network virtualization with non-orthogonal multiple access. In: IEEE/IFIP Network Operations and Management Symposium, Taipei (2018)

    Google Scholar 

  21. Hong, C.S., Kazmi, S.A., Moon, S., Van Mui, N.: SDN based wireless heterogeneous network management. In: AETA 2015: Recent Advances in Electrical Engineering and Related Sciences. Springer, Cham (2016)

    Google Scholar 

  22. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015)

    Article  Google Scholar 

  23. Kamel, M.I., Le, L.B., Girard, A.: LTE wireless network virtualization: dynamic slicing via flexible scheduling. In: Proceedings of the IEEE 80th Vehicular Technology Conference (VTC), Vancouver (2014)

    Google Scholar 

  24. Kazmi, S.A., Hong, C.S.: A matching game approach for resource allocation in wireless network virtualization. In: The International Conference on Ubiquitous Information Management and Communication (IMCOM), Beppu (2017)

    Google Scholar 

  25. Kazmi, S.A., Tran, N.H., Ho, T.M., Oo, T.Z., LeAnh, T., Moon, S., Hong, C.S.: Resource management in dense heterogeneous networks. In: 17th Asia-Pacific Network Operations and Management Symposium, APNOMS, Busan (2015)

    Google Scholar 

  26. Kazmi, S.A., Tran, N.H., Saad, W., Le, L.B., Ho, T.M., Hong, C.S.: Optimized resource management in heterogeneous wireless networks. IEEE Commun. Lett. 20(7), 1397–1400 (2016)

    Google Scholar 

  27. Kazmi, S.A., Tran, N.H., Saad, W., Han, Z., Ho, T.M., Oo, T.Z., Hong, C.S.: Mode selection and resource allocation in device-to-device communications: a matching game approach. IEEE Trans. Mob. Comput. 16(11), 3126–3141 (2017)

    Article  Google Scholar 

  28. Kazmi, S.A., Tran, N.H., Ho, T.M., Hong, C.S.: Hierarchical matching game for service selection and resource purchasing in wireless network virtualization. IEEE Commun. Lett. 22(1), 121–124 (2018)

    Article  Google Scholar 

  29. Kelly, F.P., Maulloo, A.K., Tan, D.K.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Article  Google Scholar 

  30. Lei, L., Yuan, D., Ho, C.K., Sun, S.: Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016)

    Article  Google Scholar 

  31. Liang, C., Yu, F.R.: Distributed resource allocation in virtualized wireless cellular networks based on ADMM. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong (2015)

    Google Scholar 

  32. Liang, C., Yu, F.R.: Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun. Surv. Tutorials 17(1), 358–380 (2015)

    Article  Google Scholar 

  33. Liu, B., Tian, H.: A bankruptcy game-based resource allocation approach among virtual mobile operators. IEEE Commun. Lett. 17(7), 1420–1423 (2013)

    Article  Google Scholar 

  34. Lopez-Perez, D., Guvenc, I., De la Roche, G., Kountouris, M., Quek, T.Q., Zhang, J.: Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel. Commun. 18(3), 22–30 (2011)

    Article  Google Scholar 

  35. Maghsudi, S., Stanczak, S.: Joint channel allocation and power control for underlay D2D transmission. In: IEEE International Conference on Communications (ICC), London (2015)

    Google Scholar 

  36. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific, Singapore (2013)

    Book  Google Scholar 

  37. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  38. Panwar, N., Sharma, S., Singh, A.K.: A survey on 5G: the next generation of mobile communication. Phys. Commun. 18, 64–84 (2015)

    Article  Google Scholar 

  39. Parsaeefard, S., Dawadi, R., Derakhshani, M., Le-Ngoc, T.: Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access 4, 2738–2750 (2016)

    Article  Google Scholar 

  40. Roth, A.E.: Deferred acceptance algorithms: history, theory, practice, and open questions. Int. J. Game Theory 36(3–4), 537–569 (2008)

    Article  MathSciNet  Google Scholar 

  41. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K.: Non-orthogonal multiple access (NOMA) for cellular future radio access. In: Proceedings of the IEEE Vehicular Technology Conference (VTC), Dresden (2013)

    Google Scholar 

  42. Son, K., Lee, S., Yi, Y., Chong, S.: REFIM: a practical interference management in heterogeneous wireless access networks. IEEE J. Sel. Areas Commun. 29(6), 1260–1272 (2011)

    Article  Google Scholar 

  43. Song, L., Niyato, D., Han, Z., Hossain, E.: Game-theoretic resource allocation methods for device-to-device communication. IEEE Wirel. Commun. 21(3), 136–144 (2014)

    Article  Google Scholar 

  44. Song, L., Li, Y., Ding, Z., Poor, H.V.: Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Netw. 31(4), 8–14 (2017)

    Article  Google Scholar 

  45. Ullah, S., Thar, K., Hong, C.S.: Management of scalable video streaming in information centric networking. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-016-4008-8

    Google Scholar 

  46. Van De Belt, J., Ahmadi, H., Doyle, L.E.: A dynamic embedding algorithm for wireless network virtualization. In: Proceedings of the IEEE 80th Vehicular Technology Conference (VTC), Vancouver (2014)

    Google Scholar 

  47. Venturino, L., Prasad, N., Wang, X.: Coordinated scheduling and power allocation in downlink multicell OFDMA networks. IEEE Trans. Veh. Technol. 58(6), 2835–2848 (2009)

    Article  Google Scholar 

  48. Wang, C.X., Haider, F., Gao, X., You, X.H., Yang, Y., Yuan, D., et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  49. Wei, G., Vasilakos, A.V., Zheng, Y., Xiong, N.: A game-theoretic method of fair resource allocation for cloud computing services. J. Supercomput. 54(2), 252–269 (2010)

    Article  Google Scholar 

  50. Xu, H., Li, B.: Anchor: a versatile and efficient framework for resource management in the cloud. IEEE Trans. Parallel Distrib. Syst. 24(6), 1066–1076 (2013)

    Article  Google Scholar 

  51. Yuan, P., Xiao, Y., Bi, G., Zhang, L.: Towards cooperation by carrier aggregation in heterogeneous networks: a hierarchical game approach. IEEE Trans. Veh. Technol. 66(2), 1670–1683 (2017)

    Article  Google Scholar 

  52. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., & Han, Z.: Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

    Article  Google Scholar 

  53. Zhu, K., Hossain, E.: Virtualization of 5G cellular networks as a hierarchical combinatorial auction. IEEE Trans. Mob. Comput. 15(10), 2640–2654 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2A2A05000995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong Seon Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kazmi, S.M.A., Tran, N.H., Hong, C.S. (2019). Matching Games for 5G Networking Paradigms. In: Song, J., Li, H., Coupechoux, M. (eds) Game Theory for Networking Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-93058-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93058-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93057-2

  • Online ISBN: 978-3-319-93058-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics