Skip to main content

Applications of Carbon Nanotubes in Solar Cells

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Carbon nanotubes (CNTs) have attracted the interest of numerous researchers in materials sciences and engineering because of their superior electronic and optoelectronic properties. Extensive progress has been realized through the use of CNTs, especially single-walled carbon nanotubes (SWCNTs), in optoelectronics and energy harvesting devices, including solar cells, light-emitting diodes, touch panels, and transistors. Here, we review the novel applications of CNTs in solar cells. The use of CNTs as additives, light absorbers, carrier transporters, and transparent electrodes in solar cells has been reported over the past decade. CNTs are applicable to various solar cell technologies, including CNTs/Si heterojunction , organic–inorganic perovskite, dye-sensitized, and organic photovoltaic solar cells. This review surveys recent progress in the application of CNTs to photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu L, Shearer C, Shapter J (2016) Recent development of carbon nanotube transparent conductive films. Chem Rev 116:13413–13453. https://doi.org/10.1021/acs.chemrev.6b00179

    Article  Google Scholar 

  2. Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27:6549–6574. https://doi.org/10.1002/adma.201502999

    Article  Google Scholar 

  3. Batmunkh M, Macdonald TJ, Shearer CJ, Bat-Erdene M, Wang Y, Biggs MJ, Parkin IP, Nann T, Shapter JG (2017) Carbon nanotubes in TiO2 nanofiber photoelectrodes for high-performance perovskite solar cells. Adv Sci 4:1600504. https://doi.org/10.1002/advs.201600504

    Article  Google Scholar 

  4. Barbero DR, Stranks SD (2016) Functional single-walled carbon nanotubes and nanoengineered networks for organic- and perovskite-solar-cell applications. Adv Mater 28:9668–9685. https://doi.org/10.1002/adma.201600659

    Article  Google Scholar 

  5. Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513. https://doi.org/10.1002/adma.201003188

    Article  Google Scholar 

  6. Liu Y, Wang S, Peng L-M (2016) Toward high-performance carbon nanotube photovoltaic devices. Adv Energy Mater 6:1600522. https://doi.org/10.1002/aenm.201600522

    Article  Google Scholar 

  7. Ratier B, Nunzi J-M, Aldissi M, Kraft TM, Buncel E (2012) Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review. Polym Int 61:342–354. https://doi.org/10.1002/pi.3233

    Article  Google Scholar 

  8. Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32:28–29. https://doi.org/10.1246/cl.2003.28

    Article  Google Scholar 

  9. Brown P, Takechi K, Kamat PV (2008) Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J Phys Chem C 112:4776–4782. https://doi.org/10.1021/jp7107472

    Article  Google Scholar 

  10. Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett 7:1973–1979. https://doi.org/10.1021/nl070717l

    Article  Google Scholar 

  11. Tune DD, Hennrich F, Dehm S, Klein MFG, Glaser K, Colsmann A, Shapter JG, Lemmer U, Kappes MM, Krupke R, Flavel BS (2013) The role of nanotubes in carbon nanotube–silicon solar cells. Adv Energy Mater 3:1091–1097. https://doi.org/10.1002/aenm.201200949

    Article  Google Scholar 

  12. Li X, Guard LM, Jiang J, Sakimoto K, Huang J-S, Wu J, Li J, Yu L, Pokhrel R, Brudvig GW, Ismail-Beigi S, Hazari N, Taylor AD (2014) Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells. Nano Lett 14:3388–3394. https://doi.org/10.1021/nl500894h

    Article  Google Scholar 

  13. Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS (2010) Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl Phys Lett 96:033110. https://doi.org/10.1063/1.3284657

    Article  Google Scholar 

  14. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Comun 6:6305. https://doi.org/10.1038/ncomms7305

  15. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Double-walled carbon nanotube solar cells. Nano Lett 7:2317–2321. https://doi.org/10.1021/nl070961c

    Article  Google Scholar 

  16. National Revewable Energy Laboratory (NREL) (2016). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed Sept 2016

  17. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568. https://doi.org/10.1021/nl501982b

    Article  Google Scholar 

  18. Wang F, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K (2016) Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale 8:11882–11888. https://doi.org/10.1039/c6nr01152g

    Article  Google Scholar 

  19. Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, Kauppinen EI, Maruyama S, Matsuo Y (2015) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15:6665–6671. https://doi.org/10.1021/acs.nanolett.5b02490

    Article  Google Scholar 

  20. Zhou C, Wang S, Sun J, Wei N, Yang L, Zhang Z, Liao J, Peng L-M (2013) Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Appl Phys Lett 102:103102. https://doi.org/10.1063/1.4794937

    Article  Google Scholar 

  21. Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3:1067–1071. https://doi.org/10.1021/nl034313e

    Article  Google Scholar 

  22. Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325:1367–1371. https://doi.org/10.1126/science.1176112

    Article  Google Scholar 

  23. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  24. Malapanis A, Perebeinos V, Sinha DP, Comfort E, Lee JU (2013) Quantum efficiency and capture cross section of first and second excitonic transitions of single-walled carbon nanotubes measured through photoconductivity. Nano Lett 13:3531–3538. https://doi.org/10.1021/nl400939b

    Article  Google Scholar 

  25. Aspitarte L, McCulley DR, Minot ED (2016) Photocurrent quantum yield in suspended carbon nanotube p–n junctions. Nano Lett 16:5589–5593. https://doi.org/10.1021/acs.nanolett.6b02148

    Article  Google Scholar 

  26. Kazaoui S, Cook S, Izard N, Murakami Y, Maruyama S, Minami N (2014) Photocurrent quantum yield of semiconducting carbon nanotubes: dependence on excitation energy and exciton binding energy. J Phys Chem C 118:18059–18063. https://doi.org/10.1021/jp500105f

    Article  Google Scholar 

  27. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101. https://doi.org/10.1063/1.2010598

    Article  Google Scholar 

  28. Stewart DA, Léonard F (2005) Energy conversion efficiency in nanotube optoelectronics. Nano Lett 5:219–222. https://doi.org/10.1021/nl048410z

    Article  Google Scholar 

  29. Pang-Leen O, William BE, Igor AL (2010) Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21:105203. https://doi.org/10.1088/0957

  30. Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93:1764–1768. https://doi.org/10.1063/1.1535231

    Article  Google Scholar 

  31. Dissanayake NM, Zhong Z (2011) Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic. Nano Lett 11:286–290. https://doi.org/10.1021/nl103879b

    Article  Google Scholar 

  32. Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13:2086–2091. https://doi.org/10.1021/nl400395c

    Article  Google Scholar 

  33. Dabera GDMR, Jayawardena KDGI, Prabhath MRR, Yahya I, Tan YY, Nismy NA, Shiozawa H, Sauer M, Ruiz-Soria G, Ayala P, Stolojan V, Adikaari AADT, Jarowski PD, Pichler T, Silva SRP (2013) Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. ACS Nano 7:556–565. https://doi.org/10.1021/nn304705t

    Article  Google Scholar 

  34. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23:629–633. https://doi.org/10.1002/adma.201003296

    Article  Google Scholar 

  35. Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752. https://doi.org/10.1039/c3nr33560g

    Article  Google Scholar 

  36. Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9:1866–1871. https://doi.org/10.1021/nl803849e

    Article  Google Scholar 

  37. Harris JM, Semler MR, May S, Fagan JA, Hobbie EK (2015) Nature of record efficiency fluid-processed nanotube–silicon heterojunctions. J Phys Chem C 119:10295–10303. https://doi.org/10.1021/acs.jpcc.5b02626

    Article  Google Scholar 

  38. Kanai Y, Grossman JC (2008) Role of semiconducting and metallic tubes in P3HT/carbon-nanotube photovoltaic heterojunctions: density functional theory calculations. Nano Lett 8:908–912. https://doi.org/10.1021/nl0732777

    Article  Google Scholar 

  39. Ham M-H, Paulus GLC, Lee CY, Song C, Kalantar-zadeh K, Choi W, Han J-H, Strano MS (2010) Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 4:6251–6259. https://doi.org/10.1021/nn1019384

    Article  Google Scholar 

  40. Patyk RL, Lomba BS, Nogueira AF, Furtado CA, Santos AP, Mello RMQ, Micaroni L, Hümmelgen IA (2007) Carbon nanotube–polybithiophene photovoltaic devices with high open-circuit voltage. Phys Status Solidi (RRL) 1:R43–45. https://doi.org/10.1002/pssr.200600057

  41. Zhou Y, Hu L, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88:123109. https://doi.org/10.1063/1.2187945

    Article  Google Scholar 

  42. Kim S, Yim J, Wang X, Bradley DDC, Lee S, deMello JC (2010) Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater 20:2310–2316. https://doi.org/10.1002/adfm.200902369

    Article  Google Scholar 

  43. De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland JJ, Scardaci V, Joimel J, Coleman JN (2009) Transparent, flexible, and highly conductive thin films based on polymer−nanotube composites. ACS Nano 3:714–720. https://doi.org/10.1021/nn800858w

    Article  Google Scholar 

  44. Jo JW, Jung JW, Lee JU, Jo WH (2010) Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 4:5382–5388. https://doi.org/10.1021/nn1009837

    Article  Google Scholar 

  45. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121. https://doi.org/10.1021/jp991659y

    Article  Google Scholar 

  46. Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276. https://doi.org/10.1126/science.1101243

    Article  Google Scholar 

  47. Pasquier AD, Unalan HE, Kanwal A, Miller S, Chhowalla M (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87:203511. https://doi.org/10.1063/1.2132065

    Article  Google Scholar 

  48. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon 6:809–817. https://doi.org/nphoton.2012.282/metrics

    Article  Google Scholar 

  49. Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88:233506. https://doi.org/10.1063/1.2209887

    Article  Google Scholar 

  50. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Matsuda K (2013) Enhancement mechanism of the photovoltaic conversion efficiency of single-walled carbon nanotube/Si solar cells by HNO3 doping. Appl Phys Express 6:102301. https://doi.org/10.7567/apex.6.102301

    Article  Google Scholar 

  51. Ma X, Adamska L, Yamaguchi H, Yalcin SE, Tretiak S, Doorn SK, Htoon H (2014) Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8:10782–10789. https://doi.org/10.1021/nn504553y

    Article  Google Scholar 

  52. Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13:95–99. https://doi.org/10.1021/nl3035652

    Article  Google Scholar 

  53. Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009) Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3:1407–1414. https://doi.org/10.1021/nn900197h

    Article  Google Scholar 

  54. Kozawa D, Hiraoka K, Miyauchi Y, Mouri S, Matsuda K (2012) Analysis of the photovoltaic properties of single-walled carbon nanotube/silicon heterojunction solar cells. Appl Phys Express 5:042304. https://doi.org/10.1143/apex.5.042304

    Article  Google Scholar 

  55. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2014) Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics 1:360–364. https://doi.org/10.1021/ph400133k

    Article  Google Scholar 

  56. Wadhwa P, Liu B, McCarthy MA, Wu Z, Rinzler AG (2010) Electronic junction control in a nanotube-semiconductor schottky junction solar cell. Nano Lett 10:5001–5005. https://doi.org/10.1021/nl103128a

    Article  Google Scholar 

  57. Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG (2011) Electrolyte-induced inversion layer schottky junction solar cells. Nano Lett 11:2419–2423. https://doi.org/10.1021/nl200811z

    Article  Google Scholar 

  58. Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar sells with efficiency of 15%. Sci Rep 2:884. https://doi.org/10.1038/srep00884

    Article  Google Scholar 

  59. Cui K, Qian Y, Jeon I, Anisimov A, Matsuo Y, Kauppinen EI, Maruyama S (2017) Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv Energy Mater 7:1700449. https://doi.org/10.1002/aenm.201700449

    Article  Google Scholar 

  60. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube–silicon heterojunction solar cells. Adv Mater 20:4594–4598. https://doi.org/10.1002/adma.200801810

    Article  Google Scholar 

  61. Di J, Yong Z, Zheng X, Sun B, Li Q (2013) Aligned carbon nanotubes for high-efficiency schottky solar cells. Small 9:1367–1372. https://doi.org/10.1002/smll.201202995

    Article  Google Scholar 

  62. Muramoto E, Yamasaki Y, Wang F, Hasegawa K, Matsuda K, Noda S (2016) Carbon nanotube-silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Adv 6:93575–93581. https://doi.org/10.1039/c6ra16132d

    Article  Google Scholar 

  63. Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014) Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A 2:11311–11318. https://doi.org/10.1039/c4ta01353k

    Article  Google Scholar 

  64. De Nicola F, Salvato M, Cirillo C, Crivellari M, Boscardin M, Scarselli M, Nanni F, Cacciotti I, De Crescenzi M, Castrucci P (2016) Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon 101:226–234. https://doi.org/10.1016/j.carbon.2016.01.099

    Article  Google Scholar 

  65. Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11:1901–1905. https://doi.org/10.1021/nl2002632

    Article  Google Scholar 

  66. Li X, Huang J-S, Nejati S, McMillon L, Huang S, Osuji CO, Hazari N, Taylor AD (2014) Role of HF in oxygen removal from carbon nanotubes: implications for high performance carbon electronics. Nano Lett 14:6179–6184. https://doi.org/10.1021/nl502401c

    Article  Google Scholar 

  67. Li X, Jung Y, Huang J-S, Goh T, Taylor AD (2014) Device area scale-up and improvement of SWNT/Si solar cells using silver nanowires. Adv Energy Mater 4:1400186. https://doi.org/10.1002/aenm.201400186

    Article  Google Scholar 

  68. Yu L, Batmunkh M, Grace T, Dadkhah M, Shearer C, Shapter J (2017) Application of a hole transporting organic interlayer in graphene oxide/single walled carbon nanotube-silicon heterojunction solar cells. J Mater Chem A 5:8624–8634. https://doi.org/10.1039/c7ta01782k

    Article  Google Scholar 

  69. Xu W, Wu S, Li X, Zou M, Yang L, Zhang Z, Wei J, Hu S, Li Y, Cao A (2016) High-efficiency large-area carbon nanotube-silicon solar cells. Adv Energy Mater 6:1600095. https://doi.org/10.1002/aenm.201600095

    Article  Google Scholar 

  70. Li R, Di J, Yong Z, Sun B, Li Q (2014) Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J Mater Chem A 2:4140–4143. https://doi.org/10.1039/c3ta14625a

    Article  Google Scholar 

  71. Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Hybrid silicon nanocone-polymer solar cells. Nano Lett 12:2971–2976. https://doi.org/10.1021/nl300713x

    Article  Google Scholar 

  72. D-m Sun, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nano 6:156–161. https://doi.org/10.1038/nnano.2011.1

    Article  Google Scholar 

  73. Paola C, Claudia S, Del Silvano G, Manuela S, Luca C, Mirko S, Bernard D, Alessandra C, De Maurizio C (2011) Light harvesting with multiwall carbon nanotube/silicon heterojunctions. Nanotechnology 22:115701. https://doi.org/10.1088/0957

    Article  Google Scholar 

  74. Grace T, Yu L, Gibson C, Tune D, Alturaif H, Al Othman Z, Shapter J (2016) Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nanomater 6:52. https://doi.org/10.3390/nano6030052

    Article  Google Scholar 

  75. Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2008) SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions. Appl Phys Lett 93:243117. https://doi.org/10.1063/1.3050465

    Article  Google Scholar 

  76. De Nicola F, Salvato M, Cirillo C, Crivellari M, Boscardin M, Passacantando M, Nardone M, De Matteis F, Motta N, De Crescenzi M, Castrucci P (2017) 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells. Carbon 114:402–410. https://doi.org/10.1016/j.carbon.2016.12.050

    Article  Google Scholar 

  77. Li X, Jung Y, Sakimoto K, Goh T-H, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6:879–887. https://doi.org/10.1039/c2ee23716d

    Article  Google Scholar 

  78. Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, Yang CW, Kong J, Lee YH (2011) Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 5:1236–1242. https://doi.org/10.1021/nn1028532

    Article  Google Scholar 

  79. Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12:3574–3580. https://doi.org/10.1021/nl301207e

    Article  Google Scholar 

  80. Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98:133115. https://doi.org/10.1063/1.3573829

    Article  Google Scholar 

  81. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci USA 105:2783–2787. https://doi.org/10.1073/pnas.0711990105

    Article  Google Scholar 

  82. Yu L, Tune DD, Shearer CJ, Shapter JG (2015) Implementation of antireflection layers for improved efficiency of carbon nanotube–silicon heterojunction solar cells. Sol Energy 118:592–599. https://doi.org/10.1016/j.solener.2015.06.014

    Article  Google Scholar 

  83. Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. J Appl Phys 79:1736–1740. https://doi.org/10.1063/1.360962

    Article  Google Scholar 

  84. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  85. Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9(11):927–932. https://doi.org/10.1038/nnano.2014.181

    Article  Google Scholar 

  86. Zhou H, Chen Q, Li G, Luo S, T-b Song, Duan H-S, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546. https://doi.org/10.1126/science.1254050

    Article  Google Scholar 

  87. Wang F, Shimazaki A, Yang F, Kanahashi K, Matsuki K, Miyauchi Y, Takenobu T, Wakamiya A, Murata Y, Matsuda K (2017) Highly efficient and stable perovskite solar cells by interfacial engineering using solution-processed polymer layer. J Phys Chem C 121:1562–1568. https://doi.org/10.1021/acs.jpcc.6b12137

    Article  Google Scholar 

  88. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903. https://doi.org/10.1038/nmat4014

    Article  Google Scholar 

  89. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480. https://doi.org/10.1038/nature14133

    Article  Google Scholar 

  90. Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci 6:3249–3253. https://doi.org/10.1039/c3ee42282h

    Article  Google Scholar 

  91. Chen H, Yang S (2017) Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv Mater 29:1603994. https://doi.org/10.1002/adma.201603994

    Article  Google Scholar 

  92. Li H, Cao K, Cui J, Liu S, Qiao X, Shen Y, Wang M (2016) 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8:6379–6385. https://doi.org/10.1039/c5nr07347b

    Article  Google Scholar 

  93. Luo Q, Ma H, Zhang Y, Yin X, Yao Z, Wang N, Li J, Fan S, Jiang K, Lin H (2016) Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J Mater Chem A 4:5569–5577. https://doi.org/10.1039/c6ta01715k

    Article  Google Scholar 

  94. Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH, Mathews N, Mhaisalkar SG (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797–6804. https://doi.org/10.1021/nn501096h

    Article  Google Scholar 

  95. Aitola K, Sveinbjornsson K, Correa-Baena J-P, Kaskela A, Abate A, Tian Y, Johansson EMJ, Gratzel M, Kauppinen EI, Hagfeldt A, Boschloo G (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9:461–466. https://doi.org/10.1039/c5ee03394b

    Article  Google Scholar 

  96. Gopi CVVM, Venkata-Haritha M, Prabakar K, Kim H-J (2017) Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. J Photochem Photobiol A 332:265–272. https://doi.org/10.1016/j.jphotochem.2016.09.003

    Article  Google Scholar 

  97. Aitola K, Domanski K, Correa-Baena J-P, Sveinbjörnsson K, Saliba M, Abate A, Grätzel M, Kauppinen E, Johansson EMJ, Tress W, Hagfeldt A, Boschloo G (2017) High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Adv Mater 29:1606398. https://doi.org/10.1002/adma.201606398

    Article  Google Scholar 

  98. Wang X, Li Z, Xu W, Kulkarni SA, Batabyal SK, Zhang S, Cao A, Wong LH (2015) TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11:728–735. https://doi.org/10.1016/j.nanoen.2014.11.042

    Article  Google Scholar 

  99. Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3:24226–24231. https://doi.org/10.1039/C5TA07714A

    Article  Google Scholar 

  100. Qiu L, He S, Yang J, Jin F, Deng J, Sun H, Cheng X, Guan G, Sun X, Zhao H, Peng H (2016) An all-solid-state fiber-type solar cell achieving 9.49% efficiency. J Mater Chem A 4:10105–10109. https://doi.org/10.1039/c6ta03263j

    Article  Google Scholar 

  101. Zheng X, Chen H, Wei Z, Yang Y, Lin H, Yang S (2016) High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Front Optoelectron 9:71–80. https://doi.org/10.1021/acsami.5b07703

    Article  Google Scholar 

  102. Li Z, Boix PP, Xing G, Fu K, Kulkarni SA, Batabyal SK, Xu W, Cao A, Sum TC, Mathews N, Wong LH (2016) Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale 8:6352–6360. https://doi.org/10.1039/c5nr06177f

    Article  Google Scholar 

  103. Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J Phys Chem Lett 5:4207–4212. https://doi.org/10.1021/jz5021795

    Article  Google Scholar 

  104. Lee J, Menamparambath MM, Hwang J-Y, Baik S (2015) Hierarchically structured hole transport layers of spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. Chemsuschem 8:2358–2362. https://doi.org/10.1002/cssc.201403462

    Article  Google Scholar 

  105. Ihly R, Dowgiallo A-M, Yang M, Schulz P, Stanton NJ, Reid OG, Ferguson AJ, Zhu K, Berry JJ, Blackburn JL (2016) Efficient charge extraction and slow recombination in organic-inorganic perovskites capped with semiconducting single-walled carbon nanotubes. Energy Environ Sci 9:1439–1449. https://doi.org/10.1039/c5ee03806e

    Article  Google Scholar 

  106. Wang J, Li J, Xu X, Bi Z, Xu G, Shen H (2016) Promising photovoltaic application of multi-walled carbon nanotubes in perovskites solar cells for retarding recombination. RSC Adv 6:42413–42420. https://doi.org/10.1039/c6ra04743b

    Article  Google Scholar 

  107. Gatti T, Casaluci S, Prato M, Salerno M, Di Stasio F, Ansaldo A, Menna E, Di Carlo A, Bonaccorso F (2016) Boosting perovskite solar cells performance and stability through doping a poly-3(hexylthiophene) hole transporting material with organic functionalized carbon nanostructures. Adv Funct Mater 26:7443–7453. https://doi.org/10.1002/adfm.201602803

    Article  Google Scholar 

  108. Miletić T, Pavoni E, Trifiletti V, Rizzo A, Listorti A, Colella S, Armaroli N, Bonifazi D (2016) Covalently functionalized SWCNTs as tailored p-type dopants for perovskite solar cells. ACS Appl Mater Interfaces 8:27966–27973. https://doi.org/10.1021/acsami.6b08398

    Article  Google Scholar 

  109. Cai M, Tiong VT, Hreid T, Bell J, Wang H (2015) An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J Mater Chem A 3:2784–2793.  https://doi.org/10.1039/C4TA04997G

    Article  Google Scholar 

  110. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65. https://doi.org/10.1038/nnano.2006.52

    Article  Google Scholar 

  111. Zheng X, Chen H, Li Q, Yang Y, Wei Z, Bai Y, Qiu Y, Zhou D, Wong KS, Yang S (2017) Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett 17:2496–2505. https://doi.org/10.1021/acs.nanolett.7b00200

    Article  Google Scholar 

  112. Qiu L, Deng J, Lu X, Yang Z, Peng H (2014) Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed 53:10425–10428. https://doi.org/10.1002/anie.201404973

    Article  Google Scholar 

  113. Qiu L, He S, Yang J, Deng J, Peng H (2016) Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12:2419–2424. https://doi.org/10.1002/smll.201600326

    Article  Google Scholar 

  114. Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y (2014) Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc 136:11610–11613. https://doi.org/10.1021/ja506624n

    Article  Google Scholar 

  115. Wang J, Li J, Xu X, Xu G, Shen H (2016) Enhanced photovoltaic performance with carbon nanotubes incorporating into hole transport materials for perovskite solar cells. J Electron Mater 45:5127–5132. https://doi.org/10.1007/s11664-016-4724-x

    Article  Google Scholar 

  116. Batmunkh M, Biggs MJ, Shapter JG (2015) Carbon nanotubes for dye-sensitized solar cells. Small 11:2963–2989. https://doi.org/10.1002/smll.201403155

    Article  Google Scholar 

  117. Batmunkh M, Shearer CJ, Bat-Erdene M, Biggs MJ, Shapter JG (2017) Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl Mater Interfaces 9:19945–19954. https://doi.org/10.1021/acsami.7b04894

    Article  Google Scholar 

  118. Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradečak S (2011) Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11:5316–5321. https://doi.org/10.1021/nl202796u

    Article  Google Scholar 

  119. Bag M, Renna LA, Jeong SP, Han X, Cutting CL, Maroudas D, Venkataraman D (2016) Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chem Phys Lett 662:35–41. https://doi.org/10.1016/j.cplett.2016.09.004

    Article  Google Scholar 

  120. Zhang Y, Tan L, Fu Q, Chen L, Ji T, Hu X, Chen Y (2016) Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem Commun 52:5674–5677. https://doi.org/10.1039/c6cc00268d

    Article  Google Scholar 

  121. Jvd Lagemaat, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl Phys Lett 88:233503. https://doi.org/10.1063/1.2210081

    Article  Google Scholar 

  122. Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98:084314. https://doi.org/10.1063/1.2113419

    Article  Google Scholar 

  123. Arranz-Andrés J, Blau WJ (2008) Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 46:2067–2075. https://doi.org/10.1016/j.carbon.2008.08.027

    Article  Google Scholar 

  124. Geng J, Zeng T (2006) Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J Am Chem Soc 128:16827–16833. https://doi.org/10.1021/ja065035z

    Article  Google Scholar 

  125. Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88:093106. https://doi.org/10.1063/1.2179372

    Article  Google Scholar 

  126. Mallajosyula AT, Iyer SSK, Mazhari B (2011) Increasing the efficiency of charge extraction limited poly-(3-hexylthiophene):[6] phenyl C61 butyric acid methyl ester solar cells using single walled carbon nanotubes with metallic characteristics. J Appl Phys 109:124908. https://doi.org/10.1063/1.3598081

    Article  Google Scholar 

  127. Bindl DJ, Wu M-Y, Prehn FC, Arnold MS (2011) Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett 11:455–460. https://doi.org/10.1021/nl1031343

    Article  Google Scholar 

  128. Bindl DJ, Safron NS, Arnold MS (2010) Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 4:5657–5664. https://doi.org/10.1021/nn1012397

    Article  Google Scholar 

  129. Shea MJ, Arnold MS (2013) 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl Phys Lett 102:243101. https://doi.org/10.1063/1.4811359

    Article  Google Scholar 

  130. Gong M, Shastry TA, Xie Y, Bernardi M, Jasion D, Luck KA, Marks TJ, Grossman JC, Ren S, Hersam MC (2014) Polychiral semiconducting carbon nanotube–fullerene solar cells. Nano Lett 14:5308–5314. https://doi.org/10.1021/nl5027452

    Article  Google Scholar 

  131. Ihly R, Mistry KS, Ferguson AJ, Clikeman TT, Larson BW, Reid O, Boltalina OV, Strauss SH, Rumbles G, Blackburn JL (2016) Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nat Chem 8:603–609. https://doi.org/10.1038/nchem.2496

    Article  Google Scholar 

  132. Arbab AA, Sun KC, Sahito IA, Memon AA, Choi YS, Jeong SH (2016) Fabrication of textile fabric counter electrodes using activated charcoal doped multi walled carbon nanotube hybrids for dye sensitized solar cells. J Mater Chem A 4:1495–1505. https://doi.org/10.1039/c5ta08858e

    Article  Google Scholar 

  133. Liu C-T, Wang Y-C, Dong R-X, Wang C-C, Huang K-C, Vittal R, Ho K-C, Lin J-J (2012) A dual-functional Pt/CNT TCO-free counter electrode for dye-sensitized solar cell. J Mater Chem 22:25311–25315. https://doi.org/10.1039/c2jm35102a

    Article  Google Scholar 

  134. Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361:572–580. https://doi.org/10.1016/j.ica.2007.09.025

    Article  Google Scholar 

  135. Costa RD, Lodermeyer F, Casillas R, Guldi DM (2014) Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ Sci 7:1281–1296. https://doi.org/10.1039/c3ee43458c

    Article  Google Scholar 

  136. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237. https://doi.org/10.1002/adma.201402056

    Article  Google Scholar 

  137. Lee WJ, Ramasamy E, Lee DY, Song JS (2009) Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl Mater Interfaces 1:1145–1149. https://doi.org/10.1021/am800249k

    Article  Google Scholar 

  138. Nam JG, Park YJ, Kim BS, Lee JS (2010) Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scr Mater 62:148–150. https://doi.org/10.1016/j.scriptamat.2009.10.008

    Article  Google Scholar 

  139. Di W, Husnu Emrah U, Dongxue H, Qixian Z, Li N, Gehan A, Tapani R (2008) A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate. Nanotechnology 19:424006. https://doi.org/10.1088/0957

    Article  Google Scholar 

  140. Du J, Bittner F, Hecht DS, Ladous C, Ellinger J, Oekermann T, Wark M (2013) A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells. Thin Solid Films 531:391–397. https://doi.org/10.1016/j.tsf.2012.12.051

    Article  Google Scholar 

  141. Kyaw AKK, Tantang H, Wu T, Ke L, Peh C, Huang ZH, Zeng XT, Demir HV, Zhang Q, Sun XW (2011) Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode. Appl Phys Lett 99:021107. https://doi.org/10.1063/1.3610488

    Article  Google Scholar 

  142. Sawatsuk T, Chindaduang A, Sae-kung C, Pratontep S, Tumcharern G (2009) Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: performance improvement and their mechanisms. Diamond Relat Mater 18:524–527. https://doi.org/10.1016/j.diamond.2008.10.052

    Article  Google Scholar 

  143. Peng H, Li Q, Chen T (2017) Industrial applications of carbon nanotubes. In: Grace T, Shearer C, Tune D, Yu L, Batmunkh M, Biggs MJ, ALOthman ZA, Shapter JG (eds) Use of carbon nanotubes in third-generation solar cells, 1st edn. Elsevier

    Google Scholar 

  144. Dang X, Yi H, Ham M-H, Qi J, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol 6:377–384. doi:10.1038/nnano.2011.50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, F., Matsuda, K. (2019). Applications of Carbon Nanotubes in Solar Cells. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics