Skip to main content

Geology and Geomorphology

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Part of the book series: Coral Reefs of the World ((CORW,volume 12))

Abstract

Geomorphology and geological processes exert fundamental controls on the occurrence, distribution, and makeup of mesophotic coral ecosystems (MCEs). Two broad geomorphic categories are shelves and slopes. Shelves include outer portions of continental and insular shelves that dip gently into mesophotic depths before reaching the shelf break and have very low gradients (<1°). Other low-gradient habitats include tops of isolated banks. Slope habitats extend from platform breaks down into adjacent basins and can be divided into low-gradient slopes (<30°), steep slopes (~30 to 70°), and walls (>70°). On shelves, MCEs are best developed on positive relief features elevated above the surrounding seafloor. In slope settings, MCE development is typically favored on steep irregular slopes, where coral cover is concentrated on steep-sided buttresses and sediment is channelized into narrow chutes. Relict features related to past sea levels are critically important MCE habitats on both shelves and slopes. Coral and coralline algae remain the primary frame builders in MCEs. However, accretion at mesophotic depths is likely very slow, such that they form only thin biostromal veneers over relict substrates. Sediments in MCEs are dominantly autochthonous skeletal sands and gravels. Although fluxes of sediments to the seafloor in MCEs are typically lower than in shallow reefs, sedimentary dynamics still play an important role. Low-gradient seafloor has an increased potential for accumulation of sediment detrimental to MCEs. In slope settings, downslope bed-load transport of sediment can be orders of magnitude higher than vertical fluxes and likely exerts an important influence on MCEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey E, Webster JM, Beaman RJ (2011a) Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: the influence of oscillating Pleistocene sea-levels. Mar Geol 288(1–4):61–78

    Article  Google Scholar 

  • Abbey E, Webster JM, Braga JC, Sugihara K, Wallace C, Iryu Y, Potts D, Done T, Camoin G, Seard C (2011b) Variation in deglacial coralgal assemblages and their paleoenvironmental significance: IODP expedition 310, “Tahiti Sea Level.” Glob Planet Chang 76(1–2):1–15

    Article  Google Scholar 

  • Abbey E, Webster JM, Braga JC, Jacobsen GE, Thorogood G, Thomas AL, Camoin G, Reimer PJ, Potts DC (2013) Deglacial mesophotic reef demise on the Great Barrier Reef. Palaeogeogr Palaeoclimatol Palaeoecol 392:473–494

    Article  Google Scholar 

  • Alley RB, Agustsdottir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149

    Article  Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35(1):63–75

    Article  Google Scholar 

  • Armstrong RA, Singh H, Torres J, Nemeth RS, Can A, Roman C, Eustice R, Riggs L, Garcia-Moliner G (2006) Characterizing the deep insular shelf coral reef habitat of the Hind Bank Marine Conservation District (US Virgin Islands) using the Seabed autonomous underwater vehicle. Cont Shelf Res 26(2):194–205

    Article  Google Scholar 

  • Baker E, Puglise KA, Colin P, Harris PT, Kahng SE, Rooney JJ, Sherman C, Slattery M, Spalding H (2016a) What are mesophotic coral ecosystems? In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 11–19

    Google Scholar 

  • Baker EK, Puglise KA, Harris PT (eds) (2016b) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi

    Google Scholar 

  • Banks KW, Riegl BM, Richards VP, Walker BK, Helmle KP, Jordan LKB, Phipps J, Shivji MS, Spieler RE, Dodge RE (2008) The reef tract of continental Southeast Florida (Miami-Dade, Broward and Palm Beach Counties, USA). In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 175–220

    Chapter  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG (1990) U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346:456–458

    Article  CAS  Google Scholar 

  • Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382:241–244

    Article  CAS  Google Scholar 

  • Bard E, Hamelin B, Delanghe-Sabatier D (2010) Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327(5970):1235–1237

    Article  CAS  PubMed  Google Scholar 

  • Beaman RJ, Webster JM, Wust RAJ (2008) New evidence for drowned shelf edge reefs in the Great Barrier Reef, Australia. Mar Geol 247(1–2):17–34

    Article  Google Scholar 

  • Blanchon P, Jones B (1997) Hurricane control on shelf-edge-reef architecture around Grand Cayman. Sedimentology 44:479–506

    Article  Google Scholar 

  • Blanchon P, Shaw J (1995) Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23(1):4–8

    Article  Google Scholar 

  • Blanchon P, Jones B, Ford DC (2002) Discovery of a submerged relic reef and shoreline off Grand Cayman: further support for an early Holocene jump in sea level. Sediment Geol 147(3–4):253–270

    Article  Google Scholar 

  • Bosellini FR (1998) Diversity, composition and structure of Late Eocene shelf-edge coral associations (Nago Limestone, northern Italy). Facies 39(1):203–225

    Article  Google Scholar 

  • Boss SK, Liddell WD (1987) Patterns of sediment composition of Jamaican fringing reef facies. Sedimentology 34(1):77–87

    Article  Google Scholar 

  • Bosscher H, Meesters EH (1993) Depth related changes in the growth rate of Montastrea annularis. Proc 7th Int Coral Reef Symp 1:507−512

    Google Scholar 

  • Brakel WH (1979) Small-scale spatial variation in light available to coral reef benthos: quantum irradiance measurements from a Jamaican Reef. Bull Mar Sci 29(3):406–413

    Google Scholar 

  • Bridge TCL (2016) Mesophotic coral ecosystems examined—the Great Barrier Reef, Australia. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 21–22

    Google Scholar 

  • Bridge T, Done T, Beaman R, Friedman A, Williams S, Pizarro O, Webster J (2011a) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30(1):143–153

    Article  Google Scholar 

  • Bridge TCL, Done TJ, Friedman A, Beaman RJ, Williams SB, Pizarro O, Webster JM (2011b) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 428:63–75

    Article  Google Scholar 

  • Bridge T, Beaman R, Done T, Webster J (2012a) Predicting the location and spatial extent of submerged coral reef habitat in the Great Barrier Reef World Heritage Area, Australia. PLoS ONE 7(10):e48203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge T, Fabricius K, Bongaerts P, Wallace C, Muir P, Done T, Webster J (2012b) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31(1):179–189

    Article  Google Scholar 

  • Bridge TCL, Beaman RJ, Bongaerts P, Muir PR, Ekins M, Sih T (2019) The Great Barrier Reef and Coral Sea. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 351–367

    Google Scholar 

  • Browne NK (2012) Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances. Mar Environ Res 77:71–83

    Article  CAS  PubMed  Google Scholar 

  • Cabioch G, Camoin G, Webb GE, Le Cornec F, Garcia Molina M, Pierre C, Joachimski MM (2006) Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu (South-west Pacific). Sediment Geol 185(3–4):297–318

    Article  Google Scholar 

  • Camoin G, Webster J (2014) Coral reefs and sea-level change. In: Stein R, Blackman DK, Inagaki F, Larsen H-C (eds) Developments in marine geology, vol 7. Elsevier, Amsterdam, pp 395–441

    Google Scholar 

  • Camoin G, Cabioch G, Eisenhauer A, Braga JC, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sediment Geol 185(3–4):277–295

    Article  Google Scholar 

  • Camoin GF, Iryu Y, McInroy DB, IODP-Expedition 310 Scientists (2007) IODP expedition 310 reconstructs sea level, climatic, and environmental changes in the South Pacific during the last deglaciation. Sci Drill 5:4–12

    Article  Google Scholar 

  • Carter RM, Johnson DP (1986) Sea-level controls on the post-glacial development of the Great Barrier Reef, Queensland. Mar Geol 71(1):137–164

    Article  Google Scholar 

  • Chappell J (1974) Geology of coral terraces, Huon Peninsula, New Guinea: a study of quaternary tectonic movements and sea-level changes. GSA Bull 85(4):553–570

    Article  Google Scholar 

  • Coleman F, Dennis G, Jaap W, Schmahl GP, Koenig C, Reed S, Beaver C (2004) Part 1: status and trends in habitat characterization of the Florida Middle Grounds. Final Report to the National Oceanic and Atmospheric Administration Coral Reef Conservation Program

    Google Scholar 

  • Colin PL (2016) Mesophotic coral ecosystems examined—spotlight on the Palau Island group. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 31–36

    Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38(1):111–128

    Google Scholar 

  • Cortés JN, Risk MJ (1985) A reef under siltation stress: Cahuita, Costa Rica. Bull Mar Sci 36(2):339–356

    Google Scholar 

  • Deschamps P, Durand N, Bard E, Hamelin B, Camoin G, Thomas AL, Henderson GM, Okuno J, Yokoyama Y (2012) Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483:559–564

    Article  CAS  PubMed  Google Scholar 

  • Dill MA, Seyrafian A, Vaziri-Moghaddam H (2012) Palaeoecology of the Oligocene-Miocene Asmari formation in the Dill Anticline (Zagros Basin, Iran). Neues Jahrb Geol Paläont–Abh 263(2):167–184

    Article  Google Scholar 

  • Dullo W-C (2005) Coral growth and reef growth: a brief review. Facies 51(1):33–48

    Article  Google Scholar 

  • Dutton A, Lambeck K (2012) Ice volume and sea level during the last interglacial. Science 337(6091):216–219

    Article  CAS  PubMed  Google Scholar 

  • Engels MS, Fletcher CH, Field ME, Storlazzi CD, Grossman EE, Rooney JJB, Conger CL, Glenn C (2004) Holocene reef accretion: Southwest Molokai, Hawaii, U.S.A. J Sediment Res 74(2):255–269

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Fletcher CH, Sherman CE (1995) Submerged shorelines on Oʻahu, Hawaiʻi: archive of episodic transgression during the last deglaciation? J Coast Res Spec Issue 17:141–152

    Google Scholar 

  • Fletcher CH, Bochicchio C, Conger CL, Engels MS, Feirstein EJ, Frazer N, Glenn CR, Grigg RW, Grossman EE, Harney JN, Isoun E, Murray-Wallace CV, Rooney JJ, Rubin KH, Sherman CE, Vitousek S (2008) Geology of Hawaii reefs. In: Riegl B, Dodge RE (eds) Coral reefs of the USA. Springer, New York, pp 435–488

    Chapter  Google Scholar 

  • García-Sais J (2010) Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29(2):277–288

    Article  Google Scholar 

  • Ginsburg RN, Harris PM, Eberli GP, Swart PK (1991) The growth potential of a bypass margin, Great Bahama Bank. J Sediment Res 61(6):976–987

    Google Scholar 

  • Goreau TF, Goreau NI (1973) The ecology of Jamaican coral reefs II: geomorphology, zonation and sedimentary phases. Bull Mar Sci 23:399–464

    Google Scholar 

  • Goreau TF, Land LS (1974) Fore-reef morphology and depositional processes, North Jamaica. In: Laporte LF (ed) Reefs in time and space, vol 18. Special Publication of the Society of Economic Paleontologists and Mineralogists, Tulsa, pp 77–89

    Chapter  Google Scholar 

  • Grammer GM, Ginsburg RN, Swart PK, McNeill DF, Jull AJT, Prezbindowski DR (1993) Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. J Sediment Res 63(5):983–989

    Google Scholar 

  • Grammer GM, Crescini CM, McNeill DF, Taylor LH (1999) Quantifying rates of syndepositional marine cementation in deeper platform environments-new insight into a fundamental process. J Sediment Res 69(1):202–207

    Article  CAS  Google Scholar 

  • Grigg R (2006) Depth limit for reef building corals in the Auʻau Channel, S.E. Hawaii. Coral Reefs 25(1):77–84

    Article  Google Scholar 

  • Grigg R, Grossman E, Earle S, Gittings S, Lott D, McDonough J (2002) Drowned reefs and antecedent karst topography, Auʻau Channel, S.E. Hawaiian Islands. Coral Reefs 21(1):73–82

    Article  Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1(4):389–398

    Article  Google Scholar 

  • Hanebuth TJJ, Stattegger K, Bojanowski A (2009) Termination of the last glacial maximum sea-level lowstand: the Sunda-Shelf data revisited. Glob Planet Chang 66(1):76–84

    Article  Google Scholar 

  • Harris PT (1994) Comparison of tropical, carbonate and temperate, siliciclastic tidally dominated sedimentary deposits: examples from the Australian continental shelf. Aust J Earth Sci 41(3):241–254

    Article  Google Scholar 

  • Harris PT (2016) Mesophotic coral ecosystems examined—Gulf of Carpentaria, Australia. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 37–38

    Google Scholar 

  • Harris PT, Davies PJ (1989) Submerged reefs and terraces on the shelf edge of the Great Barrier Reef, Australia. Coral Reefs 8(2):87–98

    Article  Google Scholar 

  • Harris PT, Heap AD (2009) Cyclone-induced net sediment transport pathway on the continental shelf of tropical Australia inferred from reef talus deposits. Cont Shelf Res 29(16):2011–2019

    Article  Google Scholar 

  • Harris PT, Heap AD, Marshall JF, McCulloch M (2008) A new coral reef province in the Gulf of Carpentaria, Australia: colonisation, growth and submergence during the early holocene. Mar Geol 251(1–2):85–97

    Article  Google Scholar 

  • Harris PT, Bridge TCL, Beaman RJ, Webster JM, Nichol SL, Brooke BP (2013) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70(2):284–293

    Article  Google Scholar 

  • Hernandez R, Sherman C, Weil E, Yoshioka P (2009) Spatial and temporal patterns in reef sediment accumulation and composition, southwestern insular shelf of Puerto Rico. Caribb J Sci 45(2–3):138–150

    Article  Google Scholar 

  • Heyward A, Radford B (2019) Northwest Australia. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 337–349

    Google Scholar 

  • Hinderstein L, Marr J, Martinez F, Dowgiallo M, Puglise K, Pyle R, Zawada D, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251

    Article  Google Scholar 

  • Hine AC, Mullins HT (1983) Modern carbonate shelf-slope breaks. SEPM Spec Publ 33:169–188

    Google Scholar 

  • Hine AC, Halley RB, Locker SD, Jarrett BD, Jaap WC, Mallinson DJ, Ciembronowicz KT, Ogden NB, Donahue BT, Naar DF (2008) Coral reefs, present and past, on the West Florida Shelf and platform margin. In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 127–173

    Chapter  Google Scholar 

  • Hinestrosa G, Webster JM, Beaman RJ (2016) Postglacial sediment deposition along a mixed carbonate-siliciclastic margin: new constraints from the drowned shelf-edge reefs of the Great Barrier Reef, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 446:168–185

    Article  Google Scholar 

  • Hopkins TS, Blizzard DR, Brawley SA, Earle SA, Grimm DE, Gilbert DK, Johnson PG, Livingston EH, Lutz CH, Shaw JK, Shaw BB (1977) A preliminary characterization of the biotic components of composite strip transects on the Florida Middle Grounds, northeastern Gulf of Mexico. In: Taylor DL (ed) Proceedings of the Third International Coral Reef Symposium, Miami, pp 31–37

    Google Scholar 

  • Hopley D (2006) Coral reef growth on the shelf margin of the Great Barrier Reef with special reference to the Pompey complex. J Coast Res 22:150–158

    Article  Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hoskin CM, Reed JK, Mook DH (1986) Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar Geol 73(1):125–144

    Article  Google Scholar 

  • Hubbard DK (1986) Sedimentation as a control of reef development: St. Croix, U.S.V.I. Coral Reefs 5(3):117–125

    Article  Google Scholar 

  • Hubbard DK (1992) Hurricane-induced sediment transport in open-shelf tropical systems: an example from St. Croix, U.S. Virgin Islands. J Sediment Res 62(6):946–960

    Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinian corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci 36(2):325–338

    Google Scholar 

  • Hubbard DK, Sadd JL, Roberts HH (1981) The role of physical processes in controlling sediment transport patterns on the insular shelf of St. Croix, U.S. Virgin Islands. In: Proceedings of the Fourth International Coral Reef Symposium, Manila, pp 399–404

    Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands); applications to the nature of reef systems in the fossil record. J Sediment Res 60(3):335–360

    Google Scholar 

  • Hubbard DK, Gill IP, Burke RB, Morelock J (1997) Holocene reef backstepping–southwestern Puerto Rico shelf. In: Lessios HA, Macintyre IG, McGee M (eds) Proceedings of the Eighth International Coral Reef Symposium, vol 2, pp 1779–1784

    Google Scholar 

  • Hubbard DK, Zankl H, van Heerden I, Gill IP (2005) Holocene reef development along the northeastern St. Croix shelf, Buck Island, U.S. Virgin Islands. J Sediment Res 75(1):97–113

    Article  Google Scholar 

  • Hubbard DK, Burke RB, Gill IP, Ramirez WR, Sherman CE (2008) Coral-reef geology: Puerto Rico and the US Virgin Islands. In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 263–302

    Chapter  Google Scholar 

  • Hubbard DK, Gill IP, Burke RB (2013) Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited. Coral Reefs 32(3):653–669

    Article  Google Scholar 

  • Hughes TP (1999) Off-reef transport of coral fragments at Lizard Island, Australia. Mar Geol 157(1–2):1–6

    Article  Google Scholar 

  • Hutchinson Y, Sherman C (2013) Composition of lithic substrates from mesophotic habitats in Puerto Rico and US Virgin Islands. Geol Soc Am Abstr Programs 45(2):9

    Google Scholar 

  • International Hydrographic Organization [IHO] (2013) Standardization of undersea feature names: guidelines, proposal form, terminology, Edition 4.1.0. International Hydrographic Bureau/Intergovernmental Oceanographic Commission, Monaco

    Google Scholar 

  • Insalaco E (1996) Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 121(3):169–194

    Article  Google Scholar 

  • James NP, Bourque P-A (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, St Johns, pp 323–348

    Google Scholar 

  • James NP, Ginsburg RN (1979) The seaward margin of the Belize barrier and atoll reefs, Special Publication No. 3 of the International Association of Sedimentologists. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Jarrett BD, Hine AC, Halley RB, Naar DF, Locker SD, Neumann AC, Twichell D, Hu C, Donahue BT, Jaap WC, Palandro D, Ciembronowicz K (2005) Strange bedfellows—a deep-water hermatypic coral reef superimposed on a drowned barrier island; southern Pulley Ridge, SW Florida platform margin. Mar Geol 214(4):295–307

    Article  Google Scholar 

  • Johnston MA, Nuttall MF, Eckert RJ, Embesi JA, Slowey NC, Hickerson EL, Schmahl GP (2013) Long-term monitoring at the east and west Flower Garden Banks National Marine Sanctuary, 2009–2010, volume 1: technical report. U.S. Dept. of Interior, Bureau of Ocean Energy Management, Gulf of Mexico OCS Region, New Orleans

    Google Scholar 

  • Kahng S, García-Sais J, Spalding H, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen R (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29(2):255–275

    Article  Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice Hall, Englewood Ciffs

    Google Scholar 

  • Kleypas JA (1996) Coral reef development under naturally turbid conditions: fringing reefs near Broad Sound, Australia. Coral Reefs 15(3):153–167

    Article  Google Scholar 

  • Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462(7275):863–867

    Article  CAS  PubMed  Google Scholar 

  • Kühlmann DHH (1983) Composition and ecology of deep-water coral associations. Helgoländer Meeresunters 36(2):183–204

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292(5517):679–686

    Article  CAS  PubMed  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the last glacial maximum to the Holocene. Proc Natl Acad Sci 111(43):15296–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land LS, Goreau TF (1970) Submarine lithification of Jamaican reefs. J Sediment Res 40(1):457–462

    Article  Google Scholar 

  • Larcombe P, Carter RM (2004) Cyclone pumping, sediment partitioning and the development of the Great Barrier Reef shelf system: a review. Quat Sci Rev 23(1–2):107–135

    Article  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375(1–2):1–8

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91(4):990–1003

    Article  PubMed  Google Scholar 

  • Liddell WD, Ohlhorst SL (1988) Hard substrata community patterns, 1–120 m, North Jamaica. Palaios 3(4):413–423

    Article  Google Scholar 

  • Liddell WD, Avery WE, Ohlhorst SL (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th International Coral Reef Symposium. Smithsonian Tropical Research Institute, Panama, pp 437–442

    Google Scholar 

  • Linklater M, Carroll AG, Hamylton SM, Jordan AR, Brooke BP, Nichol SL, Woodroffe CD (2016) High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res 130:34–46

    Article  Google Scholar 

  • Locker SD, Hine AC, Tedesco LP, Shinn EA (1996) Magnitude and timing of episodic sea-level rise during the last deglaciation. Geology 24(9):827–830

    Article  CAS  Google Scholar 

  • Locker S, Armstrong R, Battista T, Rooney J, Sherman C, Zawada D (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29(2):329–345

    Article  Google Scholar 

  • Locker SD, Reed JK, Farrington S, Harter S, Hine AC, Dunn S (2016) Geology and biology of the “Sticky Grounds,” shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico. Cont Shelf Res 125:71–87

    Article  Google Scholar 

  • Macintyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. J Sediment Res 47(2):503–516

    CAS  Google Scholar 

  • Macintyre IG (1988) Modern coral reefs of Western Atlantic: new geological perspective. Am Assoc Pet Geol Bull 72:1360–1369

    Google Scholar 

  • Macintyre IG (2007) Demise, regeneration, and survival of some Western Atlantic reefs during the Holocene transgression. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, New York, pp 181–200

    Chapter  Google Scholar 

  • Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. In: Choat JH, Barnes D, Borowitzka MA et al (eds) Proceedings of the 6th International Coral Reef Symposium, Vol. 1, pp 263–272

    Google Scholar 

  • Macintyre IG, Rutzler K, Norris JN, Smith KP, Cairns SD, Bucher KE, Steneck RS (1991) An early Holocene reef in the Western Atlantic: submersible investigations of a deep relict reef off the west coast of Barbados, W.I. Coral Reefs 10:167–174

    Article  Google Scholar 

  • Mallinson D, Hine A, Naar D, Locker S, Donahue B (2014) New perspectives on the geology and origin of the Florida Middle Ground carbonate banks, West Florida Shelf, USA. Mar Geol 355:54–70

    Article  Google Scholar 

  • Mateu-Vicens G, Pomar L, Ferràndez-Cañadell C (2012) Nummulitic banks in the upper Lutetian ‘Buil level,’ Ainsa Basin, South Central Pyrenean Zone: the impact of internal waves. Sedimentology 59(2):527–552

    Article  Google Scholar 

  • Mesolella KJ (1967) Zonation of uplifted Pleistocene coral reefs on Barbados, West Indies. Science 156(3775):638–640

    Article  CAS  PubMed  Google Scholar 

  • Mesolella KJ, Sealy HA, Matthews RK (1970) Facies geometries within Pleistocene reefs of Barbados, West Indies. Am Assoc Pet Geol Bull 54:1899–1917

    Google Scholar 

  • Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth-Sci Rev 71(1–2):1–75

    Article  Google Scholar 

  • Montaggioni LF, Braithwaite CJR (2009) Quaternary coral reef systems: history, development processes and controlling factors, Developments in Marine Geology, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Moore CH Jr, Graham EA, Land LS (1976) Sediment transport and dispersal across the deep fore-reef and island slope (−55 m to −305 m), Discovery Bay, Jamaica. J Sediment Petrol 46:174–187

    Google Scholar 

  • Morgan KM, Kench PS (2014) A detrital sediment budget of a Maldivian reef platform. Geomorphology 222:122–131

    Article  Google Scholar 

  • Morsilli M, Bosellini FR, Pomar L, Hallock P, Aurell M, Papazzoni CA (2012) Mesophotic coral buildups in a prodelta setting (late Eocene, southern Pyrenees, Spain): a mixed carbonate–siliciclastic system. Sedimentology 59(3):766–794

    Article  CAS  Google Scholar 

  • Muir PR, Pichon M (2019) Biodiversity of reef-building, scerlactinian corals. In: Loya Y, Pu-glise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 589–620

    Chapter  Google Scholar 

  • Mulder T, Joumes M, Hanquiez V, Gillet H, Reijmer JJG, Tournadour E, Chabaud L, Principaud M, Schnyder JSD, Borgomano J, Fauquembergue K, Ducassou E, Busson J (2017) Carbonate slope morphology revealing sediment transfer from bank-to-slope (Little Bahama Bank, Bahamas). Mar Pet Geol 83:26–34

    Article  Google Scholar 

  • Nacorda HME, Dizon RM, Meñez LAB, Nañola J, Cleto L, Roa-Chio PBL, De Jesus DO, Hernandez HB, Quimpo F-ATR, Licuanan WRY, Aliño PM, Villanoy CL (2017) Beneath 50 m of NW Pacific water: coral reefs on the Benham Bank Seamount off the Philippine sea. J Environ Sci Manag 20:110–121

    Article  Google Scholar 

  • Novak V, Santodomingo N, Rösler A, Di Martino E, Braga JC, Taylor PD, Johnson KG, Renema W (2013) Environmental reconstruction of a late Burdigalian (Miocene) patch reef in deltaic deposits (East Kalimantan, Indonesia). Palaeogeogr Palaeoclimatol Palaeoecol 374:110–122

    Article  Google Scholar 

  • Ogston AS, Storlazzi CD, Field ME, Presto MK (2004) Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23:559–569

    Google Scholar 

  • Ohlhorst SL, Liddell WD (1988) The effect of substrata microtopography on reef community structure, 60–120 m. In: Choat JH, Barnes D, Borowitzka MA et al (eds) Proceedings of the Sixth International Coral Reef Symposium. Townsville, pp 355–360

    Google Scholar 

  • Pandolfi JM, Llewellyn G, Jackson JBC (1999) Pleistocene reef environments, constituent grains, and coral community structure: Curaçao, Netherlands Antilles. Coral Reefs 18(2):107–122

    Article  Google Scholar 

  • Perry CT (2007) Tropical coastal environments: coral reefs and mangroves. In: Perry CT, Taylor K (eds) Environmental sedimentology. Blackwell Publishing, Oxford, pp 302–350

    Google Scholar 

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Pet Geol 83:261–304

    Article  CAS  Google Scholar 

  • Poty E, Chevalier E (2007) Late Frasnian phillipsastreid biostromes in Belgium. Geol Soc Lond, Spec Publ 275(1):143–161

    Article  Google Scholar 

  • Prager EJ, Ginsburg RN (1989) Carbonate nodule growth on Florida’s outer shelf and its implications for fossil interpretations. Palaios 4(4):310–312

    Article  Google Scholar 

  • Pyle RL (1996) A learner’s guide to closed-circuit rebreather operations. In: Proceedings of the rebreather forum 2.0. Redondo Beach, pp P45–P67

    Google Scholar 

  • Rankey EC, Doolittle DF (2012) Geomorphology of carbonate platform-marginal uppermost slopes: insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sedimentology 59:2146–2171

    Article  Google Scholar 

  • Reed JK, Farrington S, Harter S, David A, Moe H, Hanisak D (2017) Characterization of the mesophotic benthic habitat, benthic macrobiota, and fish assemblages from ROV dives on Pulley Ridge during the 2015 R/V Walton Smith cruise. Harbor Branch Oceanographic Institute Technical Report, vol 177, 221 p http://data.nodc.noaa.gov/coris/library/NOAA/CRCP/other/non_crcp_publications/NCCOS_Pulley_Ridge_Report.pdf

  • Reed JK, Farrington S, David A, Harter S, Pomponi S, Diaz MC, Voss JD, Spring KD, Hine AC, Kourafalou V, Smith RH, Vaz AC, Paris CB, Hanisak MD (2019) Pulley Ridge, Gulf of Mexico, USA. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 57–69

    Chapter  Google Scholar 

  • Reich CD, Poore RZ, Hickey TD (2013) The role of vermetid gastropods in the development of the Florida Middle Ground, northeast Gulf of Mexico. J Coast Res Spec Issue 63:46–57

    Article  Google Scholar 

  • Reid RP, Macintyre IG (1988) Foraminiferal-algal nodules from the eastern Caribbean; growth history and implications on the value of nodules as paleoenvironmental indicators. Palaios 3(4):424–435

    Article  Google Scholar 

  • Rezak R, Bright TJ, McGrail DW (1985) Reefs and banks of the northwestern Gulf of Mexico: their geological, biological, and physical dynamics. Wiley, New York

    Google Scholar 

  • Rivera J, Prada M, Arsenault JL, Moody G, Benoit N (2006) Detecting fish aggregations from reef habitats mapped with high resolution side scan sonar imagery. NOAA Professional Paper NMFS 5:88–104

    Google Scholar 

  • Roberts HH, Murray SP, Suhayda JN (1977) Physical processes in a fore-reef shelf environment. In: Proceedings Third International Coral Reef Symposium. Miami, pp 507–515

    Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Article  Google Scholar 

  • Rohling EJ, Grant K, Bolshaw M, Roberts AP, Siddall M, Hemleben C, Kucera M (2009) Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat Geosci 2(7):500–504

    Article  CAS  Google Scholar 

  • Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508(7497):477–482

    Article  CAS  PubMed  Google Scholar 

  • Rooney JJ, Wessel P, Hoeke R, Weiss J, Baker J, Parrish F, Fletcher CH, Chojnacki J, Garcia M, Brainard R, Vroom P (2008) Geology and geomorphology of coral reefs in the northwestern Hawaiian Islands. In: Riegl B, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 519–572

    Chapter  Google Scholar 

  • Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29(2):361–367

    Article  Google Scholar 

  • Rosen BR, Aillud GS, Bosellini FR, Clarke NJ, Insalaco E, Valldeperas FX, Mej W (2000) Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. In: Moosa MK, Soemodihardjo S, Soegiarto A et al (eds) Proceedings of the Ninth International Coral Reef Symposium. International Society for Reef Studies, Bali, pp 255–264

    Google Scholar 

  • Sanborn KL, Webster JM, Yokoyama Y, Dutton A, Braga JC, Clague DA, Paduan JB, Wagner D, Rooney JJ, Hansen JR (2017) New evidence of Hawaiian coral reef drowning in response to meltwater pulse-1A. Quat Sci Rev 175(Supplement C):60–72

    Article  Google Scholar 

  • Schmahl GP, Hickerson EL, Precht WF (2008) Biology and ecology of coral reefs and coral communities in the Flower Garden Banks region, northwestern Gulf of Mexico. In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer, Dordrecht, pp 221–261

    Chapter  Google Scholar 

  • Scoffin TP (1987) An introduction to carbonate sediments and rocks. Chapman and Hall, New York

    Google Scholar 

  • Scoffin TP, Tudhope AW (1985) Sedimentary environments of the Central Region of the Great Barrier Reef of Australia. Coral Reefs 4(2):81–93

    Article  CAS  Google Scholar 

  • Seard C, Camoin G, Yokoyama Y, Matsuzaki H, Durand N, Bard E, Sepulcre S, Deschamps P (2011) Microbialite development patterns in the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310): implications on reef framework architecture. Mar Geol 279(1–4):63–86

    Article  CAS  Google Scholar 

  • Shackleton NJ (1987) Oxygen isotopes, ice volume and sea level. Quat Sci Rev 6:183–190

    Article  Google Scholar 

  • Shao L, Li Q, Zhu W, Zhang D, Qiao P, Liu X, You L, Cui Y, Dong X (2017) Neogene carbonate platform development in the NW South China Sea: Litho-, bio- and chemo-stratigraphic evidence. Mar Geol 385:233–243

    Article  CAS  Google Scholar 

  • Sherman C, Appeldoorn R (2015) Geomorphology of mesophotic coral ecosystems in Puerto Rico and US Virgin Islands [Abstract]. 37th Scientific Meeting of the Association of Marine Laboratories of the Caribbean, Curaçao

    Google Scholar 

  • Sherman CE, Fletcher CH III, Rubin KH (1999) Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. J Sediment Res 69(5):1083–1097

    Article  CAS  Google Scholar 

  • Sherman C, Appeldoorn R, Carlo M, Nemeth M, Ruiz H, Bejarano I (2009) Use of technical diving to study deep reef environments in Puerto Rico. In: Pollock NW (ed) Proceedings of the American Academy of Underwater Sciences 28th Scientific Symposium. American Academy of Underwater Sciences, Dauphin Island, pp 58–65

    Google Scholar 

  • Sherman C, Nemeth M, Ruíz H, Bejarano I, Appeldoorn R, Pagán F, Schärer M, Weil E (2010) Geomorphology and benthic cover of mesophotic coral ecosystems of the upper insular slope of Southwest Puerto Rico. Coral Reefs 29(2):347–360

    Article  Google Scholar 

  • Sherman C, Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Kesling D, Nemeth M, Pagan F, Ruiz H, Schizas N, Weil E (2013a) Exploring the mesophotic zone: diving operations and scientific highlights of three research cruises across Puerto Rico and US Virgin Islands. In: Lang MA, Sayer MDJ (eds) Proceedings of the 2013 AAUS/ESDP Curaçao Joint International Scientific Diving Symposium. American Academy of Underwater Sciences, Dauphin Island, pp 297–312

    Google Scholar 

  • Sherman C, Hernandez R, Hutchinson Y, Whitall D (2013b) Terrigenous sedimentation patterns at reefs adjacent to the Guánica Bay Watershed. In: Whitall D, Bauer LJ, Sherman C et al (eds) Baseline assessment of Guánica Bay, Puerto Rico in support of watershed restoration. NOAA Technical Memorandum NOS NCCOS 176. NCCOS Center for Coastal Monitoring and Assessment Biogeography Branch, Silver Spring, pp 103–112

    Google Scholar 

  • Sherman CE, Fletcher CH, Rubin KH, Simmons KR, Adey WH (2014) Sea-level and reef accretion history of marine oxygen isotope stage 7 and late stage 5 based on age and facies of submerged late Pleistocene reefs, Oahu, Hawaii. Quat Res 81(1):138–150

    Article  CAS  Google Scholar 

  • Sherman C, Schmidt W, Appeldoorn R, Hutchinson Y, Ruiz H, Nemeth M, Bejarano I, Cruz Motta JJ, Xu H (2016) Sediment dynamics and their potential influence on insular-slope mesophotic coral ecosystems. Cont Shelf Res 129:1–9

    Article  Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  CAS  PubMed  Google Scholar 

  • Smith TB, Holstein D (2016) Mesophotic coral ecosystems examined—the United States Virgin Islands, USA. In: Baker EK, Puglise KA, Harris PT (eds) Mesophotic coral ecosystems—a lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi, pp 26–27

    Google Scholar 

  • Smith T, Blondeau J, Nemeth R, Pittman S, Calnan J, Kadison E, Gass J (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29(2):289–308

    Article  Google Scholar 

  • Smith TB, Brandtneris VW, Canals M, Brandt ME, Martens J, Brewer RS, Kadison E, Kammann M, Keller J, Holstein DM (2016) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Smith TB, Brandt ME, Brandtneris VW, Ennis RS, Groves SH, Habtes S, Holstein DM, Kadison E, Nemeth RS (2019) The United States Virgin Islands. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 131–147

    Chapter  Google Scholar 

  • Stanley GD (1988) The history of early Mesozoic reef communities; a three-step process. Palaios 3(2):170–183

    Article  Google Scholar 

  • Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11(1):316

    Article  PubMed  PubMed Central  Google Scholar 

  • Storlazzi CD, Ogston AS, Bothner MH, Field ME, Presto MK (2004) Wave- and tidally-driven flow and sediment flux across a fringing coral reef: southern Molokai, Hawaii. Cont Shelf Res 24(12):1397–1419

    Article  Google Scholar 

  • Stumm EC (1964) Silurian and devonian corals of the falls of the Ohio. Geol Soc Am Mem 93:1–184

    Google Scholar 

  • Tornqvist TE, Hijma MP (2012) Links between early Holocene ice-sheet decay, sea-level rise and abrupt climate change. Nat Geosci 5(9):601–606

    Article  CAS  Google Scholar 

  • Törnqvist TE, Bick SJ, González JL, van der Borg K, de Jong AFM (2004) Tracking the sea-level signature of the 8.2 ka cooling event: new constraints from the Mississippi Delta. Geophys Res Lett 31(23):L23309

    Article  CAS  Google Scholar 

  • Torres JL, Morelock J (2002) Effect of terrigenous sediment influx on coral cover and linear extension rates of three Caribbean massive coral species. Caribb J Sci 38(3–4):222–229

    Google Scholar 

  • Torresan ME, Gardner JV (2000) Acoustic mapping of the regional seafloor geology in and around Hawaiian ocean dredged-material disposal sites. U.S. Geological Survey Open-File Report 00–124

    Google Scholar 

  • Toscano MA, Macintyre IG (2003) Corrected Western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22:257–270

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Watanabe T, Watanabe TK, Yamazaki A, Yoneta S, Sowa K, Sinniger F, Eyal G, Loya Y, Harii S (2019) Coral sclerochronology: similarities and differences in the coral isotopic signatures between mesophotic and shallow-water reefs. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 667–681

    Chapter  Google Scholar 

  • Webster JM, Clague DA, Riker-Coleman K, Gallup C, Braga JC, Potts D, Moore JG, Winterer EL, Paull CK (2004) Drowning of the −150 m reef off Hawaii: a casualty of global meltwater pulse 1A? Geology 32(3):249–252

    Article  Google Scholar 

  • Webster JM, Yokoyama Y, Cotterill C, Scientists E (2011) Proceedings of the Integrated Ocean Drilling Program volume 325. Integrated Ocean Drilling Program Management International, Inc., Tokyo

    Google Scholar 

  • Webster JM, Braga JC, Humblet M, Potts DC, Iryu Y, Yokoyama Y, Fujita K, Bourillot R, Esat TM, Fallon S, Thompson WG, Thomas AL, Kan H, McGregor HV, Hinestrosa G, Obrochta SP, Lougheed BC (2018) Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nat Geosci 11(6):426–432

    Article  CAS  Google Scholar 

  • Weinstein DK (2014) Deep reef bioerosion and deposition: sedimentology of mesophotic coral reefs in the U.S. Virgin Islands. Dissertation, University of Miami

    Google Scholar 

  • Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology 222:14–24

    Article  Google Scholar 

  • Weinstein DK, Klaus JS, McNeill DF (2015a) Syndepositional cementation in the reef ‘twilight zone.’ Reef Encount 30:53–56

    Google Scholar 

  • Weinstein DK, Klaus JS, Smith TB (2015b) Habitat heterogeneity reflected in mesophotic reef sediments. Sediment Geol 329:177–187

    Article  CAS  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS, Smith TB, Giri SJ, Helmle KP (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Article  Google Scholar 

  • Wolanski E, Colin P, Naithani J, Deleersnijder E, Golbuu Y (2004) Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar Coast Shelf Sci 60(4):705–715

    Article  Google Scholar 

  • Woodroffe CD, Webster JM (2014) Coral reefs and sea-level change. Mar Geol 352:248–267

    Article  Google Scholar 

  • Woodroffe CD, Brooke BP, Linklater M, Kennedy DM, Jones BG, Buchanan C, Mleczko R, Hua Q, Zhao J-X (2010) Response of coral reefs to climate change: expansion and demise of the southernmost Pacific coral reef. Geophys Res Lett 37(15):L15602

    Article  Google Scholar 

  • Yokoyama Y, De Deckker P, Lambeck K, Johnston P, Fifield LK (2001) Sea-level at the last glacial maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeogr Palaeoclimatol Palaeoecol 165(3–4):281–297

    Article  Google Scholar 

  • Yokoyama Y, Webster JM, Cotterill C, Braga JC, Jovane L, Mills H, Morgan S, Suzuki A, IODP-Expedition-325-Scientists (2011) IODP expedition 325: the Great Barrier Reef reveals past sea-level, climate, and environmental changes since the last Ice Age. Sci Drill 12:32–45

    Article  Google Scholar 

  • Yoshioka PM (2009) Sediment transport and the distribution of shallow-water gorgonians. Caribb J Sci 45:254–259

    Article  Google Scholar 

  • Yoshioka PM, Yoshioka BB (1989) Effects of wave energy, topographic relief and sediment transport on the distribution of shallow-water gorgonians of Puerto Rico. Coral Reefs 8(3):145–152

    Article  Google Scholar 

  • Zapalski MK, Wrzołek T, Skompski S, Berkowski B (2017) Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland). Coral Reefs 36(3):847–860

    Article  Google Scholar 

Download references

Acknowledgements

CES drew extensively upon knowledge gained from research on MCEs in Puerto Rico and US Virgin Islands that was supported by NOAA/NCCOS awards NA06NOS4780190, NA09NOS4260243, NA10NOS4260223, and NA11NOS4260184 to the UPRM Caribbean Coral Reef Institute. He further wishes to acknowledge Richard Appeldoorn for numerous stimulating discussions that helped to refine our concepts and the UPRM-DMS technical diving team including Ivonne Bejarano, Milton Carlo, Doug Kesling, Michael Nemeth, Hector Ruiz and Evan Tuohy. We thank Bret Jarrett for providing images for the Pulley Ridge MCE. We also thank two anonymous reviewers for their critical assessments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark E. Sherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sherman, C.E., Locker, S.D., Webster, J.M., Weinstein, D.K. (2019). Geology and Geomorphology. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_44

Download citation

Publish with us

Policies and ethics