Skip to main content

Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Abstract

The attenuation of light with increasing depth, along with reduced exposure to wave stress, plays an important role in vertically structuring coral reef communities. Benthic photosynthetic organisms exhibit different depth distributions and abundance patterns which cause changes in community composition of associated reef fauna. This vertical zonation in coral reef community structure suggests special adaptations in response to the changing environmental regime with depth including changes in light intensity, light spectrum, and angular distribution. At the lower depth limits of mesophotic coral ecosystems (MCEs), both light and temperature can become limiting factors with the latter playing an important role at higher latitudes. The available evidence indicates that different species can exhibit distinct and sometimes opposing photophysiological adaptations with increasing depth. Some zooxanthellate corals appear to maximize ambient light utilization at the expense of efficiency, while others appear to maximize efficiency. Coral holobiont adaptations to mesophotic depths include changes in colony morphology, algal symbionts, pigment physiology, skeletal properties, and metabolic strategy. Given the scarcity of physiological studies at depths >60 m, the current understanding of how obligate zooxanthellate corals and other light-dependent organisms can inhabit such a broad depth distribution is far from complete. This chapter summarizes the ecologically relevant aspects of light and temperature regimes of MCEs, as well as the depth-related photophysiological and adaptive strategies of coral holobionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo R, Morelock J, Olivieri RA (1989) Modification of coral reef zonation by terrigenous sediment stress. Palaios 4:92–100

    Article  Google Scholar 

  • Akkaynak D, Treibitz T, Shlesinger T, Tamir R, Loya Y, Iluz D (2017) What is the space of attenuation coefficients in underwater computer vision? In: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference (CVPR), Honolulu, pp 568–577

    Google Scholar 

  • Alamaru A, Yam R, Shemesh A, Loya Y (2009) Trophic biology of Stylophora pistillata larvae: evidence from stable isotope analysis. Mar Ecol Prog Ser 383:85–94

    Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 119–150

    Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys. Funct Ecol 17:246–259

    Google Scholar 

  • Anthony KRN, Hoogenboom MO, Connolly SR (2005) Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct Ecol 19:17–26

    Google Scholar 

  • Aponte NE, Ballantine DL (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res I Oceanogr Res Pap 48:2185–2194

    Google Scholar 

  • Atkinson MJ (2011) Biogeochemistry of nutrients. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 199–206

    Google Scholar 

  • Atkinson MJ, Falter JL (2003) Coral reefs. In: Black K, Shimmield G (eds) Biogeochemistry of marine systems. CRC Press, Boca Raton, pp 40–64

    Google Scholar 

  • Atkinson MJ, Carlson B, Crow GL (1995) Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki aquarium, Honolulu, Hawaii. Coral Reefs 14:215–223

    Google Scholar 

  • Baird AH, Babcock RC, Mundy CP (2003) Habitat selection by larvae influences the depth distribution of six common coral species. Mar Ecol Prog Ser 252:289–293

    Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Baker DM, Kim K, Andras JP, Sparks JP (2011) Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring. Coral Reefs 30:709–717

    Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C (2017) The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. mBio 8:e02058–e02016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrán-Torres AU, Carricart-Ganivet JP (1993) Skeletal morphologic variation in Montastraea cavernosa (Cnidaria: Scleractinia) at Isla Verde coral reef, Veracruz, Mexico. Rev Biol Trop 41:559–562

    Google Scholar 

  • Benavides M, Houlbrèque F, Camps M, Lorrain A, Grosso O, Bonnet S (2016) Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol 219:2608–2612

    PubMed  Google Scholar 

  • Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–710

    CAS  Google Scholar 

  • Bissett WP, Patch JS, Carder KL, Lee ZP (1997) Pigment packaging and Chl a-specific absorption in high-light oceanic waters. Limnol Oceanogr 42:961–968

    CAS  Google Scholar 

  • Biton E, Gildor H (2011) The general circulation of the Gulf of Aqaba (Gulf of Eilat) revisited: the interplay between the exchange flow through the straits of Tiran and surface fluxes. J Geophys Res 116:C08020

    Google Scholar 

  • Bollati E, Plimmer D, D’Angelo C, Wiedenmann J (2017) FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. IJMS 18:1174

    PubMed Central  Google Scholar 

  • Bongaerts P, Riginos C, Hay KB, van Oppen MJH, Hoegh-Guldberg O, Dove SG (2011a) Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol 11:303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Sampayo EM, Bridge TCL, Ridgway T, Vermeulen F, Englebert N, Webster JM, Hoegh-Guldberg O (2011b) Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser 439:117–126

    Google Scholar 

  • Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O (2015a) Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc Open Sci 2:140297

    PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KR, Bak RP, Vermeij MJ, Hoegh-Guldberg O (2015b) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth CR, Morrow JH (1997) The penetration of UV into natural waters. Photochem Photobiol 65:254–257

    Google Scholar 

  • Bozinovic F, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030

    PubMed  PubMed Central  Google Scholar 

  • Brakel WH (1979) Small-scale spatial variation in light available to coral reef benthos: quantum irradiance measurements from a Jamaican reef. Bull Mar Sci 29:406–413

    Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    CAS  Google Scholar 

  • Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179–189

    Google Scholar 

  • Brodersen KE, Lichtenberg M, Ralph PJ, Kühl M, Wangpraseurt D (2014) Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals. J R Soc Interface 11:20130997

    PubMed  PubMed Central  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. J Exp Mar Biol Ecol 277:129–144

    CAS  Google Scholar 

  • Brugler MR, Opresko DM, France SC (2013) The evolutionary history of the order Antipatharia (Cnidaria: Anthozoa: Hexacorallia) as inferred from mitochondrial and nuclear DNA: implications for black coral taxonomy and systematics. Zool J Linnean Soc 169:312–361

    Google Scholar 

  • Cai L, Zhou G, Tian R-M, Tong H, Zhang W, Sun J, Ding W, Wong YH, Xie JY, Qiu J-W, Sheng L, Huang H, Qian P-Y (2017) Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep 7:9320

    PubMed  PubMed Central  Google Scholar 

  • Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81

    CAS  Google Scholar 

  • Chang SS, Prézelin BB, Trench RK (1983) Mechanisms of photoadaptation in three strains of the symbiotic dinoflagellate Symbiodinium microadriaticum. Mar Biol 76:219–229

    CAS  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216

    Google Scholar 

  • Chen TR, Yu KF, Shi Q, Li S, Price GJ, Wang R, Zhao MX, Chen TG, Zhao JX (2009) Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event. Chin Sci Bull 54:2107–2117

    Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Google Scholar 

  • Colin PL, Devaney DM, Hillis-Colinvaux L, Suchanek TH, Harrison JT (1986) Geology and biological zonation of the reef slope, 50–360 m depth at Enewetak Atoll, Marshall Islands. Bull Mar Sci 38:111–128

    Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BEF, van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc B 278:1840–1850

    PubMed  Google Scholar 

  • Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46:1588–1596

    CAS  PubMed  Google Scholar 

  • Crandall JB, Teece MA, Estes BA, Manfrino C, Ciesla JH (2016) Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J Exp Mar Biol Ecol 474:133–141

    CAS  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    CAS  PubMed  Google Scholar 

  • D’Angelo C, Denzel A, Vogt A, Matz MV, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2008) Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser 364:97–106

    Google Scholar 

  • D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31:1045–1056

    Google Scholar 

  • D’elia CF, Domotor SL, Webb KL (1983) Nutrient uptake kinetics of freshly isolated zooxanthellae. Mar Biol 75:157–167

    Google Scholar 

  • Davis GE (1982) A century of natural change in coral distribution at the Dry Tortugas: a comparison of reef maps from 1881 and 1976. Bull Mar Sci 32:608–623

    Google Scholar 

  • de Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85

    Google Scholar 

  • De Tommasi E (2016) Light manipulation by single cells: the case of diatoms. J Spectrosc 2016:2490128

    Google Scholar 

  • Devred E, Turpie KR, Moses W, Klemas VV, Moisan T, Babin M, Toro-Farmer G, Forget M-H, Jo Y-H (2013) Future retrievals of water column bio-optical properties using the Hyperspectral Infrared Imager (HyspIRI). Remote Sens 5:6812–6837

    Google Scholar 

  • Dinesen ZD (1980) A revision of the coral genus Leptoseris (Scleractinia: Fungiina: Agariciidae). Mem Queensland Mus 20:181–235

    Google Scholar 

  • Dinesen ZD (1983) Shade-dwelling corals of the Great Barrier Reef. Mar Ecol Prog Ser 10:173–185

    Google Scholar 

  • Dixon AFG, Hon KA, Keil P, Kotela MAA, Šizling AL, Jarošík V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264

    Google Scholar 

  • Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Google Scholar 

  • Dring MJ (1981) Chromatic adaption of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr 26:271–284

    Google Scholar 

  • Dubinsky Z, Falkowski PG (2011) Light as a source of information and energy in zooxanthellate corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 107–118

    Google Scholar 

  • Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324

    Google Scholar 

  • Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176

    Google Scholar 

  • Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastraea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95

    Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Google Scholar 

  • Einbinder S, Gruber DF, Salomon E, Liran O, Keren N, Tchernov D (2016) Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata. Front Mar Sci 3:195

    Google Scholar 

  • Emery WJ, Dewar JS (1982) Mean temperature-salinity, salinity-depth and temperature-depth curves for the North Atlantic and the North Pacific. Prog Oceanogr 11:219–305

    Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay KB, Hoegh-Guldberg O (2014) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Mar Biodivers 45:1–2

    Google Scholar 

  • Englebert N, Bongaerts P, Muir PR, Hay KB, Pichon M, Hoegh-Guldberg O (2017) Lower mesophotic coral communities (60–125 m depth) of the Northern Great Barrier Reef and Coral Sea. PLoS ONE 12:e0170336

    PubMed  PubMed Central  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Google Scholar 

  • Enríquez S, Méndez ER, Hoegh-Guldberg O, Iglesias-Prieto R (2017) Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc R Soc B 284:20161667

    PubMed  PubMed Central  Google Scholar 

  • Etnoyer P, Morgan LE (2005) Habitat-forming deep-sea corals in the Northeast Pacific Ocean. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 331–343

    Google Scholar 

  • Fabricius KK, Alderslade PP (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the Central-West Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science (AIMS), Townsville

    Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Google Scholar 

  • Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    CAS  Google Scholar 

  • Falkowski PG, Jokiel PL, Kinsey RR (1990) Irradiance and corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 89–107

    Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B 269:1205–1210

    PubMed  PubMed Central  Google Scholar 

  • Firing YL, Merrifield MA (2004) Extreme sea level events at Hawaii: influence of mesoscale eddies. Geophys Res Lett 31:L24306

    Google Scholar 

  • Förster TH (1960) Transfer mechanisms of electronic excitation energy. Radiat Res Suppl:326–339

    Google Scholar 

  • Frade PR, Bongaerts P, Winkelhagen AJS, Tonk L, Bak RPM (2008) In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr 53:2711–2723

    Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73:371–381

    CAS  PubMed  Google Scholar 

  • Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E (2014) The real bounty: marine biodiversity in the Pitcairn Islands. PLoS ONE 9:e100142

    PubMed  PubMed Central  Google Scholar 

  • Gaffey SJ (1986) Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): calcite, aragonite, and dolomite. Am Miner 71:151–162

    Google Scholar 

  • Ghoshal A, Eck E, Gordon M, Morse DE (2016) Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. J R Soc Interface 13:20160285

    PubMed Central  PubMed  Google Scholar 

  • Gittins JR, D’Angelo C, Oswald F, Edwards RJ, Wiedenmann J (2015) Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol Ecol 24:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg WM (2002) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:232–245

    PubMed  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    CAS  PubMed  Google Scholar 

  • Goss R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    CAS  PubMed  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Google Scholar 

  • Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248

    Google Scholar 

  • Goulet TL, Lucas MQ, Schizas NV (2019) Symbiodiniaceae genetic diversity and symbioses with hosts from shallow to mesophotic coral ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 537–551

    Google Scholar 

  • Grigg RW (1965) Ecological studies of black coral in Hawaii. Pac Sci 19:244–260

    Google Scholar 

  • Grigg RW (2006) Depth limit for reef building corals in the Auʻau channel, S.E. Hawaii. Coral Reefs 25:77–84

    Google Scholar 

  • Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580

    CAS  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Google Scholar 

  • Harriott VJ, Banks SA (2002) Latitudinal variation in coral communities in eastern Australia: a qualitative biophysical model of factors regulating coral reefs. Coral Reefs 21:83–94

    Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ, Sandeman IM, Schwartz HP, Waltho N (1998) Relationship between light and the δ15N of coral tissue: examples from Jamaica and Zanzibar. Limnol Oceanogr 43:909–920

    CAS  Google Scholar 

  • Heikoop JM, Dunn JJ, Risk MJ, Schwarcz HP, McConnaughey TA, Sandeman IM (2000) Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochim Cosmochim Acta 64:975–987

    CAS  Google Scholar 

  • Higuchi T, Agostini S, Casareto BE, Suzuki Y, Yuyama I (2015) The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching. Sci Rep 5:18467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinderstein L, Marr J, Martinez F, Dowgiallo M, Puglise K, Pyle R, Zawada D, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29:247–251

    Google Scholar 

  • Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove SG, Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50:265–271

    Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS ONE 11:e0146068

    PubMed  PubMed Central  Google Scholar 

  • Holt AL, Vahidinia S, Gagnon YL, Morse DE, Sweeney AM (2014) Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 11:1–13

    Google Scholar 

  • Holte J, Talley LD, Gilson J, Roemmich D (2017) An Argo mixed layer climatology and database. Geophys Res Lett 44:5618–2826

    Google Scholar 

  • Hoogenboom MO, Connolly SR, Anthony KRN (2008) Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology 89:1144–1154

    PubMed  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    PubMed  Google Scholar 

  • Howells EJ, Berkelmans R, van Oppen MJH, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088

    PubMed  Google Scholar 

  • Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Google Scholar 

  • Hutchings P, Mike K, Hoegh-Guldberg O (2008) The Great Barrier Reef: biology, environment and management. CSIRO Publishing, Springer, Collingwood

    Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll–protein complexes to different photon-flux densities. Mar Biol 130:23–33

    CAS  Google Scholar 

  • Imhoff JF (2014) Biology of green sulfur bacteria eLS. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Jacobs M, Lopez-Garcia M, Phrathep O-P, Lawson T, Oulton R, Whitney HM (2016) Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency. Nat Plants 2:16162

    Google Scholar 

  • Jantzen C, Schmidt GM, Wild C, Roder C, Khokiattiwong S, Richter C (2013) Benthic reef primary production in response to large amplitude internal waves at the Similan Islands (Andaman Sea, Thailand). PLoS ONE 8:e81834

    PubMed  PubMed Central  Google Scholar 

  • Jarošík V, Kratochvíl L, Honék A, Dixon AF (2004) A general rule for the dependence of developmental rate on temperature in ectothermic animals. Proc R Soc B 271:219–221

    Google Scholar 

  • Jaubert J (1977) Light, metabolism and growth forms of the hermatypic scleractinian coral Synaraea convexa Verrill in the lagoon of Moorea (French Polynesia). Proc 3rd Int Coral Reef Symp Miami 1:483–488

    Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Google Scholar 

  • Joliot A, Joliot P (1964) Etude cinetique de la reaction photochimique liberant l’oxygene au cours de la photosynthese. C R Acad Sci 258:4622–4625

    CAS  Google Scholar 

  • Joliot P, Joliot A (2003) Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76:241–245

    CAS  PubMed  Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10:309–329

    CAS  Google Scholar 

  • Kahng SE (2013) Growth rate for a zooxanthellate coral (Leptoseris hawaiiensis) at 90 m. Galaxea J Coral Reef Stud 15:39–40

    Google Scholar 

  • Kahng SE, Kelley C (2007) Vertical zonation of habitat forming benthic species on a deep photosynthetic reef (50–140 m) in the Auʻau channel, Hawaii. Coral Reefs 26:679–687

    Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest zooxanthellate, scleractinian corals in the world? Coral Reefs 25:254

    Google Scholar 

  • Kahng SE, García-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Google Scholar 

  • Kahng SE, Wagner D, Lantz C, Vetter O, Gove J, Merrifield M (2012a) Temperature related depth limits of warm-water corals. In: Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9C

    Google Scholar 

  • Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012b) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77

    CAS  Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Google Scholar 

  • Kahng SE, Copus JM, Wagner D (2017) Mesophotic coral ecosystems. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer international publishing, Switzerland, pp 1–21

    Google Scholar 

  • Kaniewska P, Anthony KRN, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155:649–660

    Google Scholar 

  • Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kühl M, Hoegh-Guldberg O (2011) Importance of macro- versus microstructure in modulating light levels inside coral colonies. J Phycol 47:846–860

    PubMed  Google Scholar 

  • Kaniewska P, Anthony KRN, Sampayo EM, Campbell PR, Hoegh-Guldberg O (2014) Implications of geometric plasticity for maximizing photosynthesis in branching corals. Mar Biol 161:313–328

    CAS  Google Scholar 

  • Karl DM, Church MJ (2017) Ecosystem structure and dynamics in the North Pacific subtropical gyre: new views of an old ocean. Ecosystems 20:433–457

    Google Scholar 

  • Karl DM, Lukas R (1996) The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res 43:129–156

    CAS  Google Scholar 

  • Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev 84:277–292

    PubMed  Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, Newcomb LA, Schmidt GW, Fitt WK (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477

    Google Scholar 

  • Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7:e01373

    Google Scholar 

  • Keshavmurthy S, Yang S-Y, Alamaru A, Chuang Y-Y, Pichon M, Obura D, Fontana S, De Palmas S, Stefani F, Benzoni F, MacDonald A, Noreen AME, Chen C, Wallace CC, Pillay RM, Denis V, Amri AY, Reimer JD, Mezaki T, Sheppard C, Loya Y, Abelson A, Mohammed MS, Baker AC, Mostafavi PG, Suharsono B, Chen CA (2013) DNA barcoding reveals the coral “laboratory-rat,” Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520

    PubMed  PubMed Central  Google Scholar 

  • Kinzie RA, Jokiel PL, York R (1984) Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar Biol 78:239–248

    Google Scholar 

  • Kirk JTO (1975) A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters I. General treatment of suspensions of pigmented cells. New Phytol 75:11–20

    Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New York

    Google Scholar 

  • Klaus JS, Budd AF, Heikoop JM, Fouke BW (2007) Environmental controls on corallite morphology in the reef coral Montastraea annularis. Bull Mar Sci 80:233–260

    Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem Photobiol 11:457–475

    CAS  PubMed  Google Scholar 

  • Kruszyński KJ, Kaandorp JA, van Liere R (2007) A computational method for quantifying morphological variation in scleractinian corals. Coral Reefs 26:831–840

    Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Google Scholar 

  • Kühlmann DHH (1983) Composition and ecology of deep-water coral associations. Helgol Mar Res 36:183–204

    Google Scholar 

  • Laboy-Nieves EN, Klein E, Conde JE, Losada F, Cruz JJ, Bone D (2001) Mass mortality of tropical marine communities in Morrocoy, Venezuela. Bull Mar Sci 68:163–179

    Google Scholar 

  • LaJuenesse TC, Lee S, Bush SL, Bruno JF (2005) Persistence of non-Caribbean algal symbionts in Indo-Pacific mushroom corals released to Jamaica 35 years ago. Coral Reefs 24:157–159

    Google Scholar 

  • Langlois LA, Hoogenboom MO (2014) Capacity for short-term physiological acclimation to light does not control the lower depth distributions of branching corals. Mar Ecol Prog Ser 508:149–162

    Google Scholar 

  • Lasker HR (1981) Phenotypic variation in the coral Montastraea cavernosa and its effects on colony energetics. Biol Bull 160:292

    Google Scholar 

  • Leichter JJ, Shellenbarger G, Genovese SJ, Wing SR (1998) Breaking internal waves on a Florida (USA) coral reef: a plankton pump at work? Mar Ecol Prog Ser 166:83–97

    Google Scholar 

  • Leichter JJ, Stewart HL, Miller SL (2003) Episodic nutrient transport to Florida coral reefs. Limnol Oceanogr 48:1394–1407

    Google Scholar 

  • Leichter JJ, Helmuth B, Fischer AM (2006) Variation beneath the surface: quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J Mar Res 64:563–588

    Google Scholar 

  • Leichter JJ, Stokes MD, Genovese SJ (2008) Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser 356:123–138

    Google Scholar 

  • Leichter JJ, Stokes MD, Hench JL, Witting J, Washburn L (2012) The island-scale internal wave climate of Moorea, French Polynesia. J Geophys Res 117:C06008

    Google Scholar 

  • Lema KA, Willis BL, Bourne DG (2012) Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol 78:3136–3144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    CAS  PubMed  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    PubMed  Google Scholar 

  • Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr 49:508–519

    CAS  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    CAS  PubMed  Google Scholar 

  • Libes S (2011) Introduction to marine biogeochemistry. Elsevier Academic Press, New York

    Google Scholar 

  • Lough JM, Cantin NE, Benthuysen JA, Cooper TF (2016) Environmental drivers of growth in massive Porites corals over 16 degrees of latitude along Australia’s northwest shelf. Limnol Oceanogr 61:684–700

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Luck DG, Forsman ZH, Toonen RJ, Leicht SJ, Kahng SE (2013) Polyphyly and hidden species among Hawaiʻi’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ 1:e132

    PubMed  PubMed Central  Google Scholar 

  • Lumsden SE, Hourigan TF, Bruckner AW, Dorr G (2007) The state of deep coral ecosystems of the United States. NOAA Technical Memorandum CRCP–3, Silver Spring

    Google Scholar 

  • Macintyre IG (2003) A classic marginal coral environment: tropical coral patches off North Carolina, USA. Coral Reefs 22:474

    Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Google Scholar 

  • Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser 332:119–128

    Google Scholar 

  • Maier C, Weinbauer MG, Pätzold J (2010) Stable isotopes reveal limitations in C and N assimilation in the Caribbean reef corals Madracis auretenra, M. carmabi and M. formosa. Mar Ecol Prog Ser 412:103–112

    CAS  Google Scholar 

  • Maragos JE, Jokiel P (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4:141–150

    Google Scholar 

  • Marcelino VR, Verbruggen H (2016) Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep 6:31508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcelino LA, Westneat MW, Stoyneva V, Henss J, Rogers JD, Radosevich A, Turzhitsky V, Siple M, Fang A, Swain TD, Fung J, Backman V (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS ONE 8:e61492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason JD, Cone MT, Fry ES (2016) Ultraviolet (250–550 nm) absorption spectrum of pure water. Appl Opt 55:7163–7172

    CAS  PubMed  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    CAS  Google Scholar 

  • Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091

    CAS  PubMed  Google Scholar 

  • McConnaughey TA (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22:316–327

    Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    CAS  PubMed  Google Scholar 

  • McGillicuddy DJ Jr, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266

    CAS  Google Scholar 

  • McManus MA, Cheriton OM, Drake PJ, Holliday D, Storlazzi CD, Donaghay PL, Greenlaw CF (2005) Effects of physical processes on structure and transport of thin zooplankton layers in the coastal ocean. Mar Ecol Prog Ser 301:199–215

    Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, New York

    Google Scholar 

  • Muir PR, Wallace CC, Done T, Aguirre JD (2015a) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138

    CAS  PubMed  Google Scholar 

  • Muir PR, Wallace CC, Bridge TCL, Bongaerts P (2015b) Diverse staghorn coral fauna on the mesophotic reefs of North-east Australia. PLoS ONE 10:e0117933

    PubMed  PubMed Central  Google Scholar 

  • Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition II. δ15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B 222:181–202

    CAS  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193

    Google Scholar 

  • Muscatine L, Grossman D, Doino J (1991) Release of symbiotic algae by tropical sea anemones and corals after cold shock. Mar Ecol Prog Ser 77:233–243

    Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    CAS  PubMed  Google Scholar 

  • Neuheimer AB, Taggart CT (2007) The growing degree-day and fish size-at-age: the overlooked metric. Can J Fish Aquat Sci 64:375–385

    Google Scholar 

  • Neuheimer AB, Thresher RE, Lyle JM, Semmens JM (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Chang 1:110–113

    Google Scholar 

  • Nir O, Gruber DF, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089–1100

    Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291–320

    Google Scholar 

  • Ohno Y, Iwasaka N, Kobashi F, Sato Y (2009) Mixed layer depth climatology of the North Pacific based on Argo observations. J Oceanogr 65:1–16

    Google Scholar 

  • Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386:480–482

    CAS  Google Scholar 

  • Ow YX, Todd PA (2010) Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 29:797–808

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effect of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS ONE 4:e7298

    PubMed  PubMed Central  Google Scholar 

  • Parrish CC (2013) Lipids in marine ecosystems. ISRN Oceanogr 2013:604045

    Google Scholar 

  • Peterson BJ (1999) Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecol 20:479–487

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Evol Syst 18:293–320

    Google Scholar 

  • Pineda J (1999) Circulation and larval distribution in internal tidal bore warm fronts. Limnol Oceanogr 44:1400–1414

    Google Scholar 

  • Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723

    CAS  PubMed  Google Scholar 

  • Porter JW, Battey JF, Smith GJ (1982) Perturbation and change in coral reef communities. Proc Natl Acad Sci U S A 79:1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Phys A 132:739–761

    Google Scholar 

  • Pörtner HO (2010) Oxygen-and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    PubMed  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    PubMed  Google Scholar 

  • Prézelin B (1987) Photosynthetic physiology of dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 174–223

    Google Scholar 

  • Putnam HM, Edmunds PJ, Fan TY (2008) Effect of temperature on the settlement choice and photophysiology of larvae from the reef coral Stylophora pistillata. Biol Bull 215:135–142

    PubMed  Google Scholar 

  • Quick C, D’Angelo C, Wiedenmann J (2018) Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front Mar Sci 5:11

    Google Scholar 

  • Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404

    CAS  Google Scholar 

  • Ramus J (1983) A physiological test of the theory of complementary chromatic adaptation. II. Brown, green and red seaweeds. J Phycol 19:173–178

    CAS  Google Scholar 

  • Reef R, Kaniewska P, Hoegh-Guldberg O (2009) Coral skeletons defend against ultraviolet radiation. PLoS ONE 4:e7995

    PubMed  PubMed Central  Google Scholar 

  • Reynaud S, Martinez P, Houlbrèque F, Billy I, Allemand D, Ferrier-Pagès C (2009) Effect of light and feeding on the nitrogen isotopic composition of a zooxanthellate coral: role of nitrogen recycling. Mar Ecol Prog Ser 392:103–110

    CAS  Google Scholar 

  • Risk MJ, Lapointe BE, Sherwood OA, Bedford BJ (2009) The use of δ15N in assessing sewage stress on coral reefs. Mar Pollut Bull 58:793–802

    CAS  PubMed  Google Scholar 

  • Roberts HH, Rouse LJ Jr, Walker ND, Hudson JH (1982) Cold-water stress in Florida Bay and Northern Bahamas: a product of winter cold-air outbreaks. J Sediment Petrol 52:145–155

    Google Scholar 

  • Roder C, Fillinger L, Jantzen C, Schmidt GM, Khokiattiwong S, Richter C (2010) Trophic response of corals to large amplitude internal waves. Mar Ecol Prog Ser 412:113–128

    CAS  Google Scholar 

  • Rodrigues LJ, Grottoli AG (2006) Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals. Geochim Cosmochim Acta 70:2781–2789

    CAS  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci U S A 92:2850–2853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowan R, Knowlton N, Baker AC, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    CAS  PubMed  Google Scholar 

  • Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    CAS  PubMed  Google Scholar 

  • Scheufen T, Iglesias-Prieto R, Enríquez S (2017) Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front Mar Sci 4:309

    Google Scholar 

  • Schlichter D, Fricke HW (1991) Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216:389–394

    Google Scholar 

  • Schlichter D, Fricke HW, Weber W (1986) Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar Biol 91:403–407

    Google Scholar 

  • Schlichter D, Kampmann H, Conrady S (1997) Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar Ecol 18:299–317

    Google Scholar 

  • Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny—a review. Grana 38:81–97

    Google Scholar 

  • Seemann J (2013) The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J Exp Mar Biol Ecol 442:88–95

    CAS  Google Scholar 

  • Seki MP, Polovina JJ, Brainard RE, Bidigare RR, Leonard CL, Foley DG (2001) Biological enhancement at cyclonic eddies tracked with GOES thermal imagery in Hawaiian waters. Geophys Res Lett 28:1583–1586

    Google Scholar 

  • Shashar N, Stambler N (1992) Endolithic algae within corals—life in an extreme environment. J Exp Mar Biol Ecol 163:277–286

    CAS  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    CAS  PubMed  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    CAS  PubMed  Google Scholar 

  • Shlesinger T, Grinblat M, Rapuano H, Amit T, Loya Y (2018) Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99:421–437

    PubMed  Google Scholar 

  • Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20:177–184

    CAS  PubMed  Google Scholar 

  • Smith EG, D’Angelo C, Salih A, Wiedenmann J (2013) Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32:463–474

    Google Scholar 

  • Smith KA, Rocheleau G, Merrifield MA, Jaramillo S, Pawlak G (2016) Temperature variability caused by internal tides in the coral reef ecosystem of Hanauma bay, Hawaiʻi. Cont Shelf Res 116:1–12

    Google Scholar 

  • Smith EG, D’Angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc R Soc B 284:20170320

    PubMed  PubMed Central  Google Scholar 

  • Stambler N, Dubinsky Z (2007) Marine phototrophs in the twilight zone. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 81–97

    Google Scholar 

  • Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:271–282

    CAS  PubMed  Google Scholar 

  • Stramska M, Dickey TD (1998) Short-term variability of the underwater light field in the oligotrophic ocean in response to surface waves and clouds. Deep-Sea Res I Oceanogr Res Pap 45:1393–1410

    Google Scholar 

  • Sun D, Su R, McConnaughey TA, Bloemendal J (2008) Variability of skeletal growth and δ13C in massive corals from the South China Sea: effects of photosynthesis, respiration and human activities. Chem Geol 255:414–425

    CAS  Google Scholar 

  • Suzuki Y, Casareto BE (2011) The role of dissolved organic nitrogen (DON) in coral biology and reef ecology. In: Dubinsy Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 207–214

    Google Scholar 

  • Swart PK, Leder JJ, Szmant AM, Dodge RE (1996) The origin of variations in the isotopic record of scleractinian corals: II. Carbon. Geochim Cosmochim Acta 60:2871–2885

    CAS  Google Scholar 

  • Swart PK, Szmant A, Porter JW, Dodge RE, Tougas JI, Southam JR (2005) The isotopic composition of respired carbon dioxide in scleractinian corals: implications for cycling of organic carbon in corals. Geochim Cosmochim Acta 69:1495–1509

    CAS  Google Scholar 

  • Tanaka Y, Grottoli AG, Matsui Y, Suzuki A, Sakai K (2015) Partitioning of nitrogen sources to algal endosymbionts of corals with long-term 15N-labelling and a mixing model. Ecol Model 309:163–169

    Google Scholar 

  • Tanaka Y, Grottoli AG, Matsui Y, Suzuki A, Sakai K (2017) Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar Ecol Prog Ser 570:101–112

    CAS  Google Scholar 

  • Tedetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397

    CAS  PubMed  Google Scholar 

  • Terán E, Méndez ER, Enríquez S, Iglesias-Prieto R (2010) Multiple light scattering and absorption in reef-building corals. Appl Opt 49:5032–5042

    PubMed  Google Scholar 

  • Thomson DP, Frisch AJ (2010) Extraordinarily high coral cover on a nearshore, high-latitude reef in South-West Australia. Coral Reefs 29:923–927

    Google Scholar 

  • Titlyanov EA, Titlyanova TV (2002) Reef-building corals—symbiotic autotrophic organisms: 2. Pathways and mechanisms of adaptation to light. Russ J Mar Biol 28:16–31

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225

    Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337

    PubMed  Google Scholar 

  • Tolosa I, Treignier C, Grover R, Ferrier-Pages C (2011) Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30:763–774

    Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction. Daya Publishing House, Delhi

    Google Scholar 

  • Toster J, Iyer KS, Xiang W, Rosei F, Spiccia L, Raston CL (2013) Diatom frustules as light traps enhance DSSC efficiency. Nanoscale 5:873–876

    CAS  PubMed  Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    CAS  Google Scholar 

  • Treignier C, Tolosa I, Grover R, Reynaud S (2009) Carbon isotope composition of fatty acids and sterols in the scleractinian coral Turbinaria reniformis: effect of light and feeding. Limnol Oceanogr 54:1933–1940

    CAS  Google Scholar 

  • Tremblay P, Grover R, Maguer J-F, Hoogenboom MO, Ferrier-Pagès C (2014) Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs 33:1–13

    Google Scholar 

  • Turner JA, Babcock RC, Hovey R, Kendrick GA (2017) Deep thinking: a systematic review of mesophotic coral ecosystems. ICES J Mar Sci 74:2309–2320

    Google Scholar 

  • Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar Ecol 29:178–192

    Google Scholar 

  • van der Have TM (2002) A proximate model for thermal tolerance in ectotherms. Oikos 98:141–155

    Google Scholar 

  • van Grondelle R, Boeker E (2017) Limits on natural photosynthesis. J Phys Chem B 121:7229–7234

    PubMed  PubMed Central  Google Scholar 

  • Veal CJ, Carmi M, Dishon G, Sharon Y, Michael K, Tchernov D, Hoegh-Guldberg O, Fine M (2010) Shallow-water wave lensing in coral reefs: a physical and biological case study. J Exp Biol 213:4304–4312

    PubMed  Google Scholar 

  • Villinski JT (2003) Depth-independent reproductive characteristics for the Caribbean reef-building coral Montastraea faveolata. Mar Biol 142:1043–1053

    Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–852

    CAS  PubMed  Google Scholar 

  • Wagner D, Pochon X, Irwin L, Toonen RJ, Gates RD (2010) Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc R Soc B 278:1323–1328

    PubMed  PubMed Central  Google Scholar 

  • Wall M, Putchim L, Schmidt GM, Jantzen C, Khokiattiwong S, Richter C (2015) Large-amplitude internal waves benefit corals during thermal stress. Proc R Soc B 282:20140650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wangpraseurt D, Larkum AWD, Franklin J, Szabó M, Ralph PJ, Kühl M (2014) Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals. J Exp Biol 217:489–498

    PubMed  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS, Smith TB, Giri SJ, Helmle KP (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Google Scholar 

  • Werdell PJ, Bailey SW (2002) The SeaWiFS bio-optical archive and storage system (SeaBASS): current architecture and implementation. NASA Tech Memo 2002–211617, (Fargion GS, McClain CR (eds)) NASA Goddard Space Flight Center, Greenbelt, 45 p, http://seabass.gsfc.nasa.gov/

  • West AO, Nolan JM, Scott JT (2016) Optical water quality and human perceptions: a synthesis. WIREs Water 3:167–180

    Google Scholar 

  • Wijgerde T, van Melis A, Silva CIF, Leal MC, Vogels L, Mutter C, Osinga R (2014) Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLoS ONE 9:e92781

    PubMed  PubMed Central  Google Scholar 

  • Wijsman-Best M (1974) Habitat-induced modification of reef corals (Faviidae) and its consequences for taxonomy. Proc 2nd Int Coral Reef Symp, Brisbane, Australia 2:217–228

    Google Scholar 

  • Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc 5th Int Coral Reef Symp Tahiti 4:107–112

    Google Scholar 

  • Winters G, Beer S, Ben Zvi B, Brickner I, Loya Y (2009) Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 384:107–119

    Google Scholar 

  • Wolanski E, Deleersnijder E (1998) Island-generated internal waves at Scott Reef, Western Australia. Cont Shelf Res 18:1649–1666

    Google Scholar 

  • Wolanski E, Delesalle B (1995) Upwelling by internal waves, Tahiti, French Polynesia. Cont Shelf Res 15:357–368

    Google Scholar 

  • Wolanski E, Hamner WM (1988) Topographically controlled fronts in the ocean and their biological influence. Science 241:177–181

    CAS  PubMed  Google Scholar 

  • Wolanski E, Pickard GL (1983) Upwelling by internal tides and Kelvin waves at the continental shelf break on the Great Barrier Reef. Aust Mar Freshwat Res 34:65–80

    Google Scholar 

  • Wolanski E, Drew E, Abel KM, O’Brien J (1988) Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar Coast Shelf Sci 26:169–201

    CAS  Google Scholar 

  • Wolanski E, Colin PL, Naithani J, Deleersnijder E, Golbuu Y (2004) Large amplitude, leaky, island-generated, internal waves around Palau, Micronesia. Estuar Coast Shelf Sci 60:705–716

    Google Scholar 

  • Won J, Rho B, Song J (2001) A phylogenetic study of the Anthozoa (phylum Cnidaria) based on morphological and molecular characters. Coral Reefs 20:39–50

    Google Scholar 

  • Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20:9–12

    Google Scholar 

  • Ziegler M, Roder CM, Büchel C, Voolstra CR (2015) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci 2:4

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the eight peer reviewers including F. Houlbrèque, P. Bongaerts, M. Hoogenboom, J. Leichter, and P. Swart whose thoughtful and detailed critique significantly improved the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel E. Kahng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahng, S.E. et al. (2019). Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_42

Download citation

Publish with us

Policies and ethics