Skip to main content

Octocorals of the Indo-Pacific

  • Chapter
  • First Online:
Mesophotic Coral Ecosystems

Abstract

Mesophotic coral ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and ~150 m, have become a topic that increasingly draws the attention of coral reef researchers. It is well established that after the reef-building scleractinian corals, octocorals are the second most common group of macrobenthic animals on many shallow Indo-Pacific reefs. This chapter reviews the existing knowledge (e.g., species composition and depth of occurrence) on octocorals from selected Indo-Pacific MCEs: Okinawa (Japan), Palau, South Africa, the northern Red Sea, and the Great Barrier Reef (Australia). For all reefs, zooxanthellate taxa are not found below 65 m. We, therefore, suggest that physiological constraints of their symbiotic algae limit the depth distribution of zooxanthellate octocorals. More studies of lower MCEs (60–150 m) and their transition to deepwater communities are needed to answer questions regarding the taxonomy, evolutionary origins, and phylogenetic uniqueness of these mesophotic octocorals. New findings on mesophotic octocoral sexual reproduction indicate a temporal reproductive isolation between shallow and mesophotic octocoral populations, thus challenging the possibility of connectivity between the two populations. The existing data should encourage future studies aimed at a greater understanding of the spatiotemporal features and ecological role of mesophotic octocorals in reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Samples were collected by ROV (ECA H800) operated from the R/V Sam Rothberg. In situ photography used a low-light black and white camera VS300 (Eca Robotics) and 1CAM Alpha HD camera (SubCimaging). Octocoral samples were collected using a manipulator arm on the ROV, and fragments of colonies were carefully preserved in 100% ethanol for molecular work. The original samples were placed in 70% ethanol for taxonomic identification and deposited at the Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies.

  2. 2.

    The AUV collected geo-referenced, stereo images with a footprint of 1.5 × 1.2 m at a rate of ~1 image pair every 50 cm. We randomly selected 30 images separated by at least 2 m (to avoid double counting from image overlap) from within 6 depth bins (10–20, 20–30, 30–40, 40–50, 50–60, and 60–70 m) representing shallow to mesophotic depths. Images were further divided into “seaward” and “leeward” aspects, depending upon their location. The GBR outer shelf supports long, linear lines of submerged shoals along the shelf edge with tops at ~15 m water depth (Hopley et al. 2007), and these features are common at Hydrographers Passage (Beaman et al. 2011). In this study, “leeward” aspect sites were considered as those occurring on the leeside of these shoals, while “seaward” aspect sites were those on the seaward side. Not all depth bins contained enough images to fulfill all the selection criteria, although each aspect/depth combination contained at least 22 images for analysis.

    Each image was visually inspected for soft corals, and the abundance of each genus is recorded using scale of relative abundance (sensu DeVantier et al. 1998). Relative abundance of each genus was scored as 1, 1–10% cover; 2, 11–30%; 3, 31–50%; 4, 51–75%; and 5, 76–100%. Taxonomic identifications based on images were informed by specimens collected from the same region concomitantly with the AUV surveys. In addition, very small colonies (<10 cm in diameter) were excluded from our analysis. Changes in community composition were assessed using multivariate techniques in PRIMER V6 (Clarke and Gorley 2006). Analyses were performed on an untransformed Bray-Curtis similarity matrix, and the relationship between images in all aspect/depth combinations was visualized using principal coordinates analysis (PCO), with Spearman rank correlation vectors showing the relationship between the dominant taxa and sites.

  3. 3.

    During the breeding season, colonies were monitored almost daily underwater in marked 30 × 1 m belt transects in both depth zones. Each day, when encountered, the number of R. f. fulvum colonies with surface-brooded embryos or planulae was recorded and their percentage of the total number of colonies was calculated.

References

  • Aharonovich D, Benayahu Y (2012) Microstructure of octocoral sclerites for diagnosis of taxonomic features. Mar Biodivers 42(2):173–177

    Google Scholar 

  • Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35:63–75

    Article  Google Scholar 

  • Audouin V (1828) Explication sommaire des planches de polypes de l’Égypte et de la Syrie, publiées par Jule-César Savignyi. In: Description de l’Egypte, 2nd edn. Paris 1826, pp 225–244

    Google Scholar 

  • Bayer FM (1981) Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proc Biol Soc Wash 94:902–947

    Google Scholar 

  • Beaman RJ, Bridge T, Done T, Webster JM, Williams S, Pizarro O (2011) Habitats and benthos at Hydrographers Passage, Great Barrier Reef, Australia. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat: GeoHab atlas of seafloor geomorphic features and benthic habitats. Elsevier, Amsterdam, 425 p

    Google Scholar 

  • Benayahu Y (1990) Xeniidae (Cnidaria: Octocorallia) from the Red Sea with description of a new species. Zool Meded 64(9):113–120

    Google Scholar 

  • Benayahu Y (1995) Species composition of soft corals (Octocorallia, Alcyonacea) on the coral reefs of Sesoko Island, Ryukyu Archipelago, Japan. Galaxea 12:103–124

    Google Scholar 

  • Benayahu Y (2002) Soft corals (Octocorallia: Alcyonacea) of the southern Ryukyu Archipelago: the families Tubiporidae, Clavulariidae, Alcyoniidae and Briareidae. J Jpn Coral Reef Soc 2002(4):11–32

    Google Scholar 

  • Benayahu Y, Loya Y (1977) Space partitioning by stony corals, soft corals and benthic algae on the coral reefs of the northern Gulf of Eilat (Red Sea). Helgol Wiss Meeresun 30:362–382

    Google Scholar 

  • Benayahu Y, Loya Y (1981) Competition for space among coral-reef organisms at Eilat, Red Sea. Bull Mar Sci 31:514–522

    Google Scholar 

  • Benayahu Y, Loya Y (1983) Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskål, 1775). Biol Bull 165:353–369

    CAS  PubMed  Google Scholar 

  • Benayahu Y, Loya Y (1984a) Life history studies on the Red Sea soft coral Xenia macrospiculata Gohar, 1940. I. Annual dynamics of gonadal development. Biol Bull 166:32–43

    Google Scholar 

  • Benayahu Y, Loya Y (1984b) Substratum preferences and planulae settling of two red sea alcyonaceans: Xenia macrospiculata Gohar and Parerythropodium fulvum fulvum (Forskål). J Exp Mar Biol Ecol 83:249–260

    Google Scholar 

  • Benayahu Y, Loya Y (1985) Settlement and recruitment of a soft coral: why is Xenia macrospiculata a successful colonizer? Bull Mar Sci 36:177–188

    Google Scholar 

  • Benayahu Y, Loya Y (1986) Sexual reproduction of a soft coral: synchronous and brief annual spawning of Sarcophyton glaucum (Quoy and Gaimard, 1833). Biol Bull 170:32–42

    Google Scholar 

  • Benayahu Y, Schleyer MH (1993) Corals of the south-west Indian Ocean, I. Alcyonacea from Sodwana Bay, South Africa. Oceanogr Res Inst 67:1–16

    Google Scholar 

  • Benayahu Y, Shlagman A, Schleyer MH (2003) Corals of the south-west Indian Ocean: VI. The Alcyonacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial east African reefs. Zool Verh 345:49–58

    Google Scholar 

  • Benayahu Y, McFadden CS, Shoham E (2017a) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea. ZooKeys 680:1–11

    Google Scholar 

  • Benayahu Y, McFadden CS, Shoham E, Van Ofwegen LP (2017b) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: II. A new zooxanthellate species from Eilat, northern Red Sea. ZooKeys 676:1–12

    Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Google Scholar 

  • Bongaerts P, Bridge TCL, Kline DI, Muir PR, Wallace CC, Beaman RJ, Hoegh-Guldberg O (2011) Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs 30:335–335

    Google Scholar 

  • Bridge T, Done T, Friedman A et al (2011a) Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 428:63–75

    Google Scholar 

  • Bridge TCL, Done TJ, Beaman RJ, Friedman A, Williams SB, Pizarro O, Webster JM (2011b) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30(1):143–153

    Google Scholar 

  • Bridge TC, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179–189

    Google Scholar 

  • Bridge TC, Hughes TP, Guinotte JM, Bongaerts P (2013) Call to protect all coral reefs. Nat Clim Chang 3:528–530

    Google Scholar 

  • Bridge TCL, Beaman RJ, Bongaerts P, Muir PR, Ekins M, Sih T (2019) The Great Barrier Reef and Coral Sea. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 351–367

    Google Scholar 

  • Celliers L, Schleyer MH (2007) Coral community structure and risk assessment of high-latitude reefs at Sodwana Bay, South Africa. Biodivers Conserv 17:3097–3117

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER V6: user manual-tutorial. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Colin PL (2009) Marine environments of Palau. Indo-Pacific Press, San Diego

    Google Scholar 

  • DeVantier LM, De’Ath G, Done TJ, Turak E (1998) Ecological assessment of a complex natural system: a case study from the Great Barrier Reef. Ecol Appl 8(2):480–496

    Google Scholar 

  • Ehrenberg CG (1834) Beitrage zur Kenntnis der Corallenthiere im allgemeinen, und besonderen des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abhandlungen der Koniglichen Akademie der Wissenschaft Berlin, 1832 1:225–380

    Google Scholar 

  • Etnoyer PJ, Wickes LN, Silva M, Dubick JD, Balthis L, Salgado E, MacDonald IR (2016) Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90

    Google Scholar 

  • Eyal G (2014) Ecology and taxonomy of mesophotic communities in Israel (Red Sea and Mediterranean). MSc thesis, Tel-Aviv University

    Google Scholar 

  • Fabricius KK, Alderslade PP (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Fabricius K, De’Ath G (2008) Photosynthetic symbionts and energy supply determine octocoral biodiversity in coral reefs. Ecology 89:3163–3173

    PubMed  Google Scholar 

  • Fabricius KE, Alderslade PP, Williams GC, Colin PL, Golbuu Y (2007) Octocorallia in Palau, Micronesia: effects of biogeography and coastal influences on local and regional biodiversity. In: Kayanne H, Omori M, Fabricius K, Verheij E, Colin P, Golbuu Y, Yurihira H (eds) Coral reefs of Palau. Palau International Coral Reef Centre, Palau, pp 79–92

    Google Scholar 

  • Forsskål P (1775) Descriptiones animalium – avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit Petrus Forskål, post mortem auctoris edidit Carsten Niebuhr, Kobenhavn

    Google Scholar 

  • Fricke HW, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser 11(2):113–117

    Google Scholar 

  • Gohar HAF (1940) Studies on the Xeniidae of the Red Sea. Fouad I University, Cairo

    Google Scholar 

  • Gohar HAF (1948) A description and some biological studies of a new alcyonarian species Clavularia hamra Gohar. Publ Mar Biol Station Al-Ghardaqa (Red Sea) 6:3–33

    Google Scholar 

  • Grasshoff M (2000) The gorgonians of the Sinai coast and the Strait of Gubal, Red Sea (Coelenterata, Octocorallia). Cour Forsch Senckenb 224:1–125

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Halász A, Reynolds AM, McFadden CS, Toonen RJ, Benayahu Y (2014) Could polyp pulsation be the key to species boundaries in the genus Ovabunda (Octocorallia: Alcyonacea: Xeniidae)? Hydrobiologia 759:95–107

    Google Scholar 

  • Hickson SJ (1930) On the classification of the Alcyonaria. Proc Zool Soc London 100:229–252

    Google Scholar 

  • Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic coral ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251

    Google Scholar 

  • Holstein DM, Paris CB, Vaz AC, Smith TB (2016) Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35:23–37

    Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kahng SE, Kelley CD (2007) Vertical zonation of megabenthic taxa on a deep photosynthetic reef (50–140 m) in the Auʻau Channel, Hawaii. Coral Reefs 26:679–687

    Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29(2):255–275

    Google Scholar 

  • Kahng SE, Benayahu Y, Lasker HR (2011) Sexual reproduction in octocorals. Mar Ecol Prog Ser 443:265–283

    Google Scholar 

  • Klunzinger KB (1877) Die Korallthiere des Rothen Meeres, vol 1. Verlag der Gutmann’schen buchhandlung (O. Enslin), Berlin

    Google Scholar 

  • Kükenthal G (1913) Plantae chinenses forrestianae. Description of new species of Cyperaceae. Notes R Bot Gard Edinb 8:9–10

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8

    Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Google Scholar 

  • Lutjeharms JRE (2006) The Agulhas Current. Springer, Berlin

    Google Scholar 

  • Mandelberg-Aharon Y, Benayahu Y (2015) Reproductive features of the Red Sea octocoral Sarcophyton auritum are uniform within generic boundaries across wide biogeographical regions. Hydrobiologia 759:119–132

    CAS  Google Scholar 

  • McFadden CS, Sánchez JA, France SC (2010) Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr Comp Biol 50:389–410

    CAS  PubMed  Google Scholar 

  • McFadden CS, Brown AS, Brayton C, Hunt CB, Van Ofwegen LP (2014) Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular proxies agree with morphological estimates of species richness in Palau. Coral Reefs 33(2):275–286

    Google Scholar 

  • McFadden CS, Haverkort-Yeh R, Reynolds AM, Halàsz A, Quattrini AM, Forsman ZH, Benayahu Y, Toonen RJ (2017) Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol Phylogenet Evol 112:174–184

    PubMed  Google Scholar 

  • Menza C, Kendall M, Rogers C, Miller J (2007) A deep reef in deep trouble. Cont Shelf Res 27(17):2224–2230

    Google Scholar 

  • Namin KS, Van Ofwegen LP (2010) An overview of Bebryce (Cnidaria, Octocorallia, Plexauridae) species with tiny rosettes, with the description of a new species from the Gulf of Oman. Zoosystema 32(3):479–493

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    CAS  PubMed  Google Scholar 

  • Perkol-Finkel S, Benayahu Y (2004) Community structure of stony and soft corals on artificial and natural reefs in Eilat (Red Sea): comparative aspects and implications. Coral Reefs 23:195–205

    Google Scholar 

  • Perkol-Finkel S, Benayahu Y (2005) Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res 59:79–99

    CAS  PubMed  Google Scholar 

  • Puglise KA, Hinderstein LM, Marr JCA, Dowgiallo MJ, Martinez FA (2009) Mesophotic coral ecosystems research strategy: international workshop to prioritize research and management needs for mesophotic coral ecosystems, Jupiter, Florida, 12–15 July 2008, NOAA Technical Memorandum NOS NCCOS 98 and OAR OER 2. NOAA National Centers for Coastal Ocean Science, Silver Spring, 24 p

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

    Google Scholar 

  • Ramsay PJ, Schleyer MH, Leuci R, Muller GA, Celliers L, Harris JM (2006) The development of an expert marine geographical information system to provide an environmental and economic decision-support system for coastal tourism and leisure developments within the Lubombo Spatial Development Initiative. Department of Arts, Culture, Science and Technology of South Africa Innovation Fund Project–24401 Report, 93 p

    Google Scholar 

  • Reinicke GB (1997) Xeniidae (Coelenterata: Octocorallia) of the Red Sea, with descriptions of six new species of Xenia. Fauna Saudi Arab 16:5–62

    Google Scholar 

  • Riegl B, Schleyer MH, Cook PJ, Branch GM (1995) Structure of Africa’s southernmost coral communities. Bull Mar Sci 56:676–691

    Google Scholar 

  • Samimi Namin K, van Ofwegen LP (2010) An overview of Bebryce (Cnidaria, Octocorallia, Plexauridae) species with tiny rosettes, with the description of a new species from the Gulf of Oman. Zoosystema 32:479–493

    Google Scholar 

  • Sánchez JA, Dueñas LF, Rowley SJ, González FL, Vergara DC, Montaño-Salazar SM, Calixto-Botia I, Gómez CE, Abeytia R, Colin PL, Cordeiro RTS, Pérez CD (2019) Gorgonian corals. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 729–747

    Google Scholar 

  • Savigny JG (1817) Description de l’Egypte (Hist. nat.)

    Google Scholar 

  • Schleyer MH (2000) South African coral communities. In: Mcclanahan T, Sheppard C, Obura D (eds) Coral reefs of the Indian Ocean: their ecology and conservation. Oxford University Press, New York

    Google Scholar 

  • Shoham E, Benayahu Y (2017) Higher species richness of octocorals in the uppermesophotic zone in Eilat (Gulf of Aqaba) compared to shallower reef zones. Coral Reefs 36:71–81

    Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Bio Ecol 408:32–41

    Google Scholar 

  • Spalding MD, Brown BE (2015) Warm-water coral reefs and climate change. Science 350(6262):769–771

    CAS  PubMed  Google Scholar 

  • Stiasny GA (1940) Gorgonaria aus dem Roten Meere. (Sammlung Dr. Cyril Crossland, Ghardaqa, und der “Mabahith” Expedition 1934–5. Publications of the Marine Biological Station Ghardaqa (Red Sea) No2. The Fouad I University

    Google Scholar 

  • Stiasny GA (1938) Diagnosen einiger neuer Gorgonarien-Arten aus dem Roten Meere. Zool Anz 121(11/12):336–341

    Google Scholar 

  • Stiasny GA (1947) De gorgonarien-familie Acanthogorgiidae Kükenthal and Gorzawsky, 1908 met bijzondere inachtneming van het materiaal der Siboga-expeditie. Verh K Nederlandsche Akad Wet Afd Natuurkunde Tweede Sectie 43:1–93

    Google Scholar 

  • Stiasny GA (1959) Gorgonarien aus dem Roten Meere (Sammlung Dr. R. Ph. Dollfus, Paris aus dem Golf von Suez). XXIV. Alcyonaria I:37–65

    Google Scholar 

  • Tentori E, Ofwegen van LP (2011) Patterns of distribution of calcite crystals in soft corals sclerites. J Morphol 272(5):614–628

    CAS  PubMed  Google Scholar 

  • Thomson JA, Dean LMI (1931) The Alcyonacea of the Siboga Expedition with an addendum to the Gorgonacea. Siboga-Exp. Monograph 13(d):1–227, plts. 1–8

    Google Scholar 

  • Thomson JA, McQueen JM (1907) Report on the marine biology of the Sudanese Red Sea, VIII. The Alcyonarians. J Linn Soc (Zool) 31:48–70

    Google Scholar 

  • Tixier-Durivault A, Prevorsek M (1959) Révision de la famille des Nephtheidae. Mém Mus Nation Hist Nat 20:1–151

    Google Scholar 

  • Uddin MH, Roy MC, Tanaka J (2011) Cytotoxic cholic acid type sterones from a marine soft coral Paraminabea sp. Chem Nat Compd 47(1):64–67

    CAS  Google Scholar 

  • Utinomi H (1954) Some alcyoniid octocorals from Kii Coast, middle Japan. Publ Seto Mar Biol Lab IV:43–55

    Google Scholar 

  • Utinomi H (1975) Octocorallia collected by trawling in the western Australia (A biological result of I.I.O.E. Collections). Publ Seto Mar Biol Lab XXII:237–266

    Google Scholar 

  • Ofwegen van LP (2005) A new genus of nephtheid soft corals (Octocorallia: Alcyonacea: Nephtheidae) from the Indo-Pacific. Zool Meded Leiden 79:1–236

    Google Scholar 

  • Ofwegen van LP (2008) The genus Sinularia (Octocorallia: Alcyonacea) at Palau, Micronesia. Zool Med Leiden 82:631–735

    Google Scholar 

  • Ofwegen van LP (2016) The genus Litophyton Forskål, 1775 (Octocorallia, Alcyonacea, Nephtheidae) in the Red Sea and the western Indian Ocean. ZooKeys 567:1

    Google Scholar 

  • Ofwegen van LP, Benayahu Y (2006) A new genus of paralcyoniid soft corals (Octocorallia, Alcyonacea, Paralcyoniidae) from the Indo-West Pacific. J Jpn Coral Reef Soc 8(1):25–37

    Google Scholar 

  • Ofwegen van LP, Benayahu Y, McFadden CS (2013) Sinularia leptoclados (Ehrenberg, 1834) (Cnidaria, Octocorallia) re-examined. Zookeys 272:29

    Google Scholar 

  • Ofwegen van LP, McFadden CS, Benayahu Y (2016) Sinularia polydactyla (Ehrenberg, 1834) (Cnidaria, Octocorallia) re-examined. Zookeys 581:71

    Google Scholar 

  • Van Oppen MJH, Bongaerts P, Underwood JN, Peplow LM, Cooper TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    Google Scholar 

  • Verseveldt J (1965) Report on the Octocorallia (Stolonifera and Alcyonacea) of the Israel south Red Sea Expedition, 1962, with notes on other collections from the Red Sea. Sea Fish Res Stn Haifa Bull 14:27–47

    Google Scholar 

  • Verseveldt J (1970) Report on some Octocorallia (Alcyonacea) from the northern Red Sea. Isr J Zool 19(4):209–229

    Google Scholar 

  • Verseveldt J (1977) Australian Octocorallia (Coelenterata). Mar Freshw Res 28(2):171–240

    Google Scholar 

  • Verseveldt J, Benayahu Y (1978) Descriptions of one old and five new species of Alcyonacea (Coelenterata: Octocorallia) from the Red Sea. Zool Meded 53:57–74

    Google Scholar 

  • Verseveldt J, Benayahu Y (1983) On two old and fourteen new species of Alcyonacea (Coelenterata, Octocorallia) from the Red Sea. Zool Verh 208:1–33

    Google Scholar 

  • Williams GC (1992) Biogeography of the octocorallian coelenterate fauna of southern Africa. Biol J Linn Soc 46:351–401

    Google Scholar 

  • Williams GC, Cairns SD (2017) Biodiversity myth busters. Octocoral Research Center. http://researcharchive.calacademy.org/research/izg/Biodiversity%20Myth%20Busters.html. Accessed 25 Jan 2018

  • Williams SB, Pizarro O, Webster JM, Beaman RJ, Mahon I, Johnson-Roberson M, Bridge TC (2010) Autonomous underwater vehicle–assisted surveying of drowned reefs on the shelf edge of the Great Barrier Reef, Australia. J Field Robot 27(5):675–697

    Google Scholar 

Download references

Acknowledgments

We thank the Interuniversity Institute for Marine Sciences in Eilat for the use of the R/V Sam Rothberg and the professional assistance of its crew members. We are indebted to EcoOcean staff members for operating the ROV. Special thanks are due to L.P. van Ofwegen, Naturalis Biodiversity Center, Leiden, The Netherlands, for his support and help in taxonomy. We acknowledge A. Gonzalez for laboratory assistance, A. Shlagman for curatorial skills, V. Wexler for digital editing, and N. Paz for editorial assistance. Special thanks are due to K. Fabricius for identifying the GBR octocorals. Collection efforts in Palau were supported by the US National Cancer Institute with identification made by P. Alderslade and L.P. van Ofwegen. Special thanks go to CRRF staff Lori Bell Colin, Matt Mesubed, and Emilio Basilius.

This research was supported in part by the TASCMAR project (tools and strategies to access original bioactive compounds from cultivated marine invertebrates and associated symbionts) that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634674 and the Israel Cohen Chair in Environmental Zoology to YB. Collection of animals complied with official permits issued by the respective authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehuda Benayahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benayahu, Y. et al. (2019). Octocorals of the Indo-Pacific. In: Loya, Y., Puglise, K., Bridge, T. (eds) Mesophotic Coral Ecosystems. Coral Reefs of the World, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-92735-0_38

Download citation

Publish with us

Policies and ethics