Skip to main content

Current Status of Genomic Maps: Genomic Selection/GBV in Livestock

  • Chapter
  • First Online:
Animal Biotechnology 2

Abstract

Our understanding on how the genome is structured has improved substantially since the human genome was first sequenced in 2001. The sequencing of livestock and other model animals, in addition to other organisms, has also helped to identify common genomic patterns and features, which can now be summarised in genome maps. The annotation of sequence variation in the livestock genomes has opened up the possibility of using its genomic information for improving the prediction accuracy of its genetic merit. This chapter will give a general view on the main features annotated to the livestock genomes and outline the application of molecular information in the prediction of the genetic breeding value of the animals. The advantages and limitations of implementing this methodology in distinct production systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson R (2015) Promoter or enhancer, what’s the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays 37:314–323. https://doi.org/10.1002/bies.201400162

    Article  PubMed  Google Scholar 

  • Archibald AL et al (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157–175

    Article  CAS  PubMed  Google Scholar 

  • Berry DP, Kearney JF (2011) Imputation of genotypes from low- to high-density genotyping platforms and implications for genomic selection. Animal 5:1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Blasco A (2008) The role of genetic engineering in livestock production. Livestock Sci 113:191–201

    Article  Google Scholar 

  • Blasco A (2017) Bayesian statitics for animal scientists. Springer, New York

    Google Scholar 

  • Blasco A, Toro MA (2014) A short critical history of the application of genomics to animal breeding. Livstock Sci 166:4–9

    Article  Google Scholar 

  • Chen CY, Misztal I, Aguilar I, Tsuruta S, Meuwissen THE, Aggrey SE, Wing T, Muir WM (2011) Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: an example using broiler chickens. J Anim Sci 89:23–28

    Article  CAS  PubMed  Google Scholar 

  • Clark SA, van der Werf J (2013) Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. In: Gondro C, van der Werf J, Hayes B (eds) Genome-wide association studies and genomic prediction. Springer, New York

    Google Scholar 

  • Cleveland MA, Hickey JM (2013) Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation. J Anim Sci 91:3583–3592

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  • Falconer D, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Edinburgh

    Google Scholar 

  • Fernando RL, Garrick D (2013) Bayesian methods applied to GWAS. In: Gondro C, van der Werf J, Hayes B (eds) Genome-wide association studies and genomic prediction. Springer, New York

    Google Scholar 

  • Groenen MAM, Schook LB, Archibald AL (2011) Pig genomics. In: Rothschild MF, Ruvinsky A (eds) The genetics of the pig, 2nd edn. CAB International, Wallingford, UK, p 496. https://doi.org/10.1079/9781845937560.0000

    Chapter  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569. https://doi.org/10.1371/journal.pgen.1003569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions--beyond repression of gene expression. Nat Rev Genet 15:599–612. https://doi.org/10.1038/nrg3765

    Article  PubMed  CAS  Google Scholar 

  • Horton BH, Banks R, Van der Werf JHJ (2015) Industry benefits from using genomic information in two- and three-tier sheep breeding systems. Anim Prod Sci 55:437–446

    Article  Google Scholar 

  • Huang Y, Hickey JM, Cleveland MA, Maltecca C (2012) Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost. Genet Sel Evol 44:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibañez N, Blasco A (2011) Modifying growth curve parameters by multitrait genomic selection. J Anim Sci 89:661–668

    Article  CAS  Google Scholar 

  • Ibáñez-Escriche N, Forni S, Noguera JL, Varona L (2014) Genomic information in pig breeding: science meets industry needs. Livestock Sci 166:94–100

    Article  Google Scholar 

  • Jonas E, de Koning DJ (2015) Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Anim Front 6:1–8

    Google Scholar 

  • Knap PW, Wang L (2012) Pig breeding for improved feed efficiency. In: Patience JF (ed) Feed efficiency in swine. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Knol EF, Nielsen B, Knap PW (2016) Genomic selection in commercial pig breeding. Anim Front 6:15–22

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  PubMed Central  CAS  Google Scholar 

  • Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663

    Article  CAS  PubMed  Google Scholar 

  • Libri D (2015) Sleeping beauty and the beast (of pervasive transcription). RNA 21:678–679. https://doi.org/10.1261/rna.050948.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lillehammer M, Meuwissen THE, Sonesson AK (2013) Genomic selection for two traits in a maternal pig breeding scheme. J Anim Sci 91:3079–3087

    Article  CAS  PubMed  Google Scholar 

  • Lund MS, Su G, Janss L, Guldbrandtsen B, Brøndum RF (2014) Genomic evaluation of cattle in a multi-breed context. Livestock Sci 166:101–110

    Article  Google Scholar 

  • Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585:1600–1616

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree and genomic information. J Dairy Sci 92:4648–4655

    Article  CAS  PubMed  Google Scholar 

  • Neale DB et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholas FW, Smith C (1983) Increased rates of genetic change in dairy cattle by embryo transfer and splitting. Anim Prod Sci 36:341–353

    Article  Google Scholar 

  • Rolf MM, Decker JE, Mckay SD, Tizioto PC, Branham KA, Whitacre LK, Hoff JL, Regitano LCA, Taylor JF (2014) Genomics in the United States beef industry. Livestock Sci 166:84–93

    Article  Google Scholar 

  • Rupp R, Mucha S, Larroque H, McEwan J, Conington J (2016) Genomic application in sheep and goat breeding. Anim Front 6:39–44

    Article  Google Scholar 

  • Schaeffer LR (2006) Strategy for applying genome-wide selectionin strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  CAS  PubMed  Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM, Palhiere I, Lemarié S, Fugeray-Scarbel A, Elsen JM (2016) Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program. Animal 6:1033–1041

    Google Scholar 

  • Silver LM (1995) Mouse genetics. Oxford University Press, Bar Harbor, Maine

    Google Scholar 

  • Simianier H (2016) Genomic and other revolutions why some technologies are quickly adopted and others are not. Anim Front 6:53–58

    Article  Google Scholar 

  • Smith C, Smith DJ (1993) The need for close linkages in markers-assisted selection for economic meritin livestock. Anim Breed Abst 61:197–204

    Google Scholar 

  • Soller M (1978) The use of loci associated with quantitative traits in dairy cattle improvement. Anim Prod 27:133–139

    Article  Google Scholar 

  • Van Eenennaam AL, Weigel KA, Young AE, Matthew AC, Dekkers JCM (2013) Applied animal genomics: results from the field. Annu Rev Anim Biosci 2:9.1–9.35

    Google Scholar 

  • Van Raden PM, O’Connell JR, Wiggans GR, Weigel KA (2011) Genomic evaluations with many more genotypes. Genet Sel Evol 43:10

    Article  Google Scholar 

  • Vitezica ZG, Varona L, Elsen JM, Misztal I, Herring W, Legarra A (2016) Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs. Genet Sel Evol 48:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren WC et al (2017) A new chicken genome assembly provides insight into avian genome structure. G3 7:109–117. https://doi.org/10.1534/g3.116.035923

    Article  PubMed  CAS  Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327

    Article  PubMed  Google Scholar 

  • Wolc A, Zhao HH, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Stricker C, Habier D, Fernando RL, Garrick DJ, Lamont SJ, Dekkers JCM (2015) Response and inbreeding from a genomic selection experiment in layer chickens. Genet Sel Evol 47:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolc A, Kranis A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Avendano A, Watson KA, Hickey JM, De los Campos G, Fernando RL, Garrick DJ, Dekkers JCM (2016) Implementation of genomic selection in the poultry industry. Anim Front 6:23–31

    Article  Google Scholar 

  • Won KJ et al (2013) Comparative annotation of functional regions in the human genome using epigenomic data. Nucleic Acids Res 41:4423–4432. https://doi.org/10.1093/nar/gkt143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright MW (2014) A short guide to long non-coding RNA gene nomenclature. Hum Genomics 8:7. https://doi.org/10.1186/1479-7364-8-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang J (2016) Are human translated pseudogenes functional? Mol Biol Evol 33:755–760. https://doi.org/10.1093/molbev/msv268

    Article  PubMed  CAS  Google Scholar 

  • Yerle M et al (1995) The PiGMaP consortium cytogenetic map of the domestic pig (Sus scrofa domestica). Mamm Genome 6:176–186

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin Blasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blasco, A., Pena, R.N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 2. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_4

Download citation

Publish with us

Policies and ethics