Skip to main content

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 20))

Abstract

Plants are sessile organisms and are inevitably exposed to various stress factors during their lifetime. Among abiotic stresses, drought is the most prominent which affects plant growth and yield worldwide. To combat with drought, plants have developed various adaptive strategies. Understanding the mechanisms by which plants perceive and transduce stress signals to initiate adaptive responses is of extreme relevance for rational engineering of hardier crop. Crop improvement against drought stress has been particularly enthralling; consequently, the complex drought stress response has been extensively studied in order to understand tolerance mechanisms thoroughly. As conventional breeding strategies for crop improvement approach their limits, agriculture has to adapt novel approaches to meet the demands of an ever-growing world population. Recent technical advances have led to the emergence of high-throughput tools to explore and exploit plant genomes for crop improvement. In this context, the high-throughput ‘-Omics’ era of research has arisen with most propitious perspectives in developing improved varieties. These omics-based approaches aim to decipher the entire genome for gaining insights into plant molecular responses, which will in turn provide specific strategies for crop improvement. The three main omics technologies—genomics , proteomics and metabolomics are aimed at unraveling the overall expression of genes, proteins and metabolites, respectively, in a functionally relevant context. Advances in this area have provided insights into the molecular basis of various fundamental processes involved in plant stress responses and thus opened up new perspectives and opportunities for improving crop plants. In this chapter, how three core ‘-omics’ techniques can be translated to create new crops that are more efficiently adapted to adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, Latif MA (2012) Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects. Bio Med Res Int 2013

    Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8(3–4):339–345

    CAS  PubMed  Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560

    Article  CAS  PubMed  Google Scholar 

  • Andersen JS, Mann M (2006) Organellar proteomics: turning inventories into insights. EMBO Rep 7(9):874–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisimov SV (2008) Serial analysis of gene expression (SAGE): 13 years of application in research. Curr Pharma Biotechnol 9(5):338–350

    Article  CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183

    Article  CAS  PubMed  Google Scholar 

  • Bagge M, Xia X, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Baginsky S (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectrom Rev 28(1):93–120

    Article  CAS  PubMed  Google Scholar 

  • Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9(4):212–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A et al (2008) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37:D885–D890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6(7):1198–1214

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ et al (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9(9):418–425

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302(5652):1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Bouchez D, Höfte H (1998) Functional genomics in plants. Plant Physiol 118(3):725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol 18(6):630–634

    Article  CAS  Google Scholar 

  • Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161(1–2):195–208

    Article  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6(20):5504–5516

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9(11):3100–3114

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Stevenson B, Lee BH, Zhu JK (2002) Screening for gene regulation mutants by bioluminescence imaging. Sci STKE 140:1–10

    Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA et al (2004) A new resource for cereal genomics: 22 K barley gene chip comes of age. Plant Physiol 134(3):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Func Integr Genomics 7(2):111–134

    Article  CAS  Google Scholar 

  • de Hoon M, Hayashizaki Y (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44(5):627

    Article  PubMed  CAS  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33(4):648–654

    Article  CAS  PubMed  Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL et al (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103(17):6518–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Res 90(1):5–18

    Article  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Sawasaki T (2003) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv 21(8):695–713

    Article  CAS  PubMed  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Func Integr Genomics 9(3):377–396

    Article  CAS  Google Scholar 

  • Fei Z, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40(1):47–59

    Article  PubMed  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W et al (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55(3):526–542

    Article  CAS  PubMed  Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10(9):617–627

    Article  CAS  PubMed  Google Scholar 

  • Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P et al (2012) Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genom 13(1):103

    Article  CAS  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11(12):587–593

    Article  CAS  PubMed  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2(7):495–502

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S et al (2004) 5′-end SAGE for the analysis of transcriptional start sites. Nat Biotechnol 22(9):1146–1149

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Islam N, Kawasaki H (2004) Technical aspects of functional proteomics in plants. Phytochem 65(11):1487–1498

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Igawa T, Fujiwara M, Takahashi H, Sawasaki T, Endo Y, Seki M, Shinozaki K et al (2009) Isolation and identification of ubiquitin-related proteins from Arabidopsis seedlings. J Exp Botany 60(11):3067–3073

    Article  CAS  Google Scholar 

  • Iijima Y, Nakamura Y, Ogata Y, Tanaka KI, Sakurai N, Suda K, Suzuki T et al (2008) Metabolite annotations based on the integration of mass spectral information. Plant J 54(5):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41(2):258–263

    Article  CAS  PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA et al (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72(3):285–314

    Article  PubMed  CAS  Google Scholar 

  • Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 6(9):1459–1472

    Article  CAS  PubMed  Google Scholar 

  • Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labelling of milligram quantities of proteins. FEBS Lett 442(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C et al (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S (2005) Rice proteome database: a step toward functional analysis of the rice genome. Plant Mol Biol 59(1):179–190

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P et al (2004) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21(8):1635–1638

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132(2):517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Loukehaich R, Wang T, Ouyang B, Ziaf K, Li H, Zhang J, Lu Y, Ye Z (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63(15):5593–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16(10):1276–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integ Plant Biol 52(12):1059–1074

    Article  CAS  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012:728398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manzano C, Abraham Z, López-Torrejón G, Del Pozo JC (2008) Identification of ubiquitinated proteins in Arabidopsis. Plant Mol Biol 68(1–2):145–158

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20(6):719–726

    Article  CAS  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méchin V, Balliau T, Château-Joubert S, Davanture M, Langella O, Négroni L et al (2004) A two-dimensional proteome map of maize endosperm. Phytochem 65(11):1609–1618

    Article  CAS  Google Scholar 

  • Meyers BC, Souret FF, Lu C, Green PJ (2006) Sweating the small stuff: microRNA discovery in plants. Curr Opin Biotechnol 17(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol 50(2):341–359

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51(4):497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270(5):371–377

    Article  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    Article  CAS  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat. Rev Genet 13(2):85

    Article  CAS  Google Scholar 

  • Newton RP, Brenton AG, Smith CJ, Dudley E (2004) Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65(11):1449–1485

    Article  CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotech 25(4):473–477

    Article  CAS  Google Scholar 

  • Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21(3):892–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R et al (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750

    Article  CAS  PubMed  Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8(2):196–210

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Pandey N, Lakhwani D, Dubey NK, Pathre UV, Sawant SV (2012) Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genom 13(1):680

    Article  CAS  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomics 1(1):95–104

    Article  CAS  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10(12):603–609

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6(20):5529–5548

    Article  CAS  PubMed  Google Scholar 

  • Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, Paux E (2010) Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genom 11(1):714

    Article  CAS  Google Scholar 

  • Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y et al (2009) Soybean proteome database: a data resource for plant differential omics. J Proteome Res 8(7):3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Schripsema J (2010) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21(1):14–21

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K (2007) Multidimensional protein identification technology (MudPIT) Analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610

    Article  PubMed  CAS  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM et al (2004) A populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101(38):13951–13956

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens RC, Yokoyama S, Wilson IA (2001) Global efforts in structural genomics. Science 294(5540):89–92

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43

    Article  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima JI, Awazuhara M (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42(2):218–235

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High frequency modification of plant genes using engineered zinc finger nucleases. Nature 459(7245):442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda T, Wada A (2004) Omic space: coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics 20(11):1759–1765

    Article  CAS  PubMed  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Tanaka MA, Morosawa T, Kurotani A, Yoshida T (2012) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res 19(4):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Dubey (2009) Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biochem Biotechnol 18(2):127–138

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  • Vega-Sánchez ME, Gowda M, Wang GL (2007) Tag-based approaches for deep transcriptome analysis in plants. Plant Sci 173(4):371–380

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484

    Article  CAS  PubMed  Google Scholar 

  • von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L et al (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134(2):548–559

    Article  CAS  Google Scholar 

  • Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genom 12(1):149

    Article  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35(1–2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Ann Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H et al (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis. Plant Cell 20(8):2160–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V et al (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. The Plant J 40(2):276–290

    Article  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, D., Ashraf, N., Khurana, J.P., Shiva Kameshwari, M.N. (2019). The ‘Omics’ Approach for Crop Improvement Against Drought Stress. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-91956-0_8

Download citation

Publish with us

Policies and ethics