Skip to main content

Losses in Transportation—Importance and Methods of Handling

  • Chapter
  • First Online:
SMART Supply Network

Part of the book series: EcoProduction ((ECOPROD))

Abstract

A smart supply network must be immune against the situations like losing the goods during the transportation process. Such losses may raise the necessity of increasing the number of deliveries and thus the use of fuel and pollution. The importance of this problem has been proved by the results of a quantitative research performed among Polish companies. A solution to this problem is to design a smart supply network with appropriate DSS (decision support system), based on relevant mathematical models and algorithms, that allow to reduce the number of multiple deliveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Theory, algorithms and applications. New Jersey: Prentice Hall, Englewood Cliffs.

    Google Scholar 

  2. Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: a review. European Journal of Operational Research, 196(1), 1–20.

    Article  Google Scholar 

  3. Anholcer, M., & Kawa, A. (2017). Identyfikacja strat i braków powstających w transporcie - wyniki badań przeprowadzonych metodą jakościową [Identification of losses and faults in transport: results from qualitative research]. Gospodarka Materiałowa i Logistyka, 12(2017), 22–29.

    Google Scholar 

  4. Anholcer, M. (2017). Optymalizacja przewozów produktów szybko tracących wartość – modele i algorytmy [Optimization of transport of perishable products – models and algorithms]. Poznań: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.

    Google Scholar 

  5. Balachandran, V., & Thompson, G.L. (1974). A note on Computational simplifications in solving generalized transportation problems, by Glover and Klingman. Discussion Papers 66, Northwestern University, Center for Mathematical Studies in Economics and Management Science, http://www.kellogg.northwestern.edu/research/math/papers/66.pdf. Cited 28 July 2015.

  6. Balas, E. (1966). The dual method for the generalized transportation problem. Management Science Series A (Sciences), 12(7), 555–568.

    Google Scholar 

  7. Balas, E., & Ivanescu, P. L. (1964). On the generalized transportation problem. Management Science Series A (Sciences), 11(1), 188–202.

    Google Scholar 

  8. Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2010). Linear programming and network flows (4th ed.). Hoboken, New Jersey: Wiley.

    Google Scholar 

  9. Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.

    Article  Google Scholar 

  10. Bertsekas, D. P., & Tseng, P. (1988). Relaxation methods for minimum cost ordinary and generalized network flow problems. Operations Research, 36(1), 93–114.

    Article  Google Scholar 

  11. Choi, T.-M., & Chiu, C.-H. (2012). Mean-downside-risk and mean-variance newsvendor models: implications for sustainable fashion retailing. International Journal of Production Economics, 135(2), 552–560.

    Article  Google Scholar 

  12. Cohen, E., & Megiddo, N. (1994). New algorithms for generalized network flows. Mathematical Programming, 64, 325–336.

    Article  Google Scholar 

  13. Dangalchev, C. A. (1996). Partially-linear transportation problems. European Journal of Operational Research, 91, 623–633.

    Article  Google Scholar 

  14. Elam, J., Glover, F., & Klingman, D. (1979). A strongly convergent primal simplex algorithm for generalized networks. Mathematics of Operations Research, 4(1), 39–59.

    Article  Google Scholar 

  15. Glover, F., Karney, D., Klingman, D., & Napier, A. (1974). A computation study on start procedures, basis change criteria, and solution algorithms for transportation problems. Management Science, 20(5), 793–813.

    Article  Google Scholar 

  16. Glover, F., & Klingman, D. (1973). A note on computational simplifications in solving generalized transportation problems. Transportation Science, 7(4), 351–361.

    Article  Google Scholar 

  17. Glover, F., Klingman, D., & Napier, A. (1972). Basic dual feasible solutions for a class of generalized networks. Operations Research, 20(1), 126–136.

    Article  Google Scholar 

  18. Goldberg, A.V., Plotkin, S.A., Tardos, E. (1988). Combinatorial algorithms for the generalized circulation problem. In SFCS’88 Proceedings of the 29th Annual Symposium on Foundations of Computer Science (pp. 432–443).

    Google Scholar 

  19. Goldfarb, D., & Lin, Y. (2002). Combinatorial interior point methods for generalized network flow problems. Mathematical Programming Series A, 93, 227–246.

    Article  Google Scholar 

  20. Gottlieb, E. S. (2002). Solving generalized transportation problems via pure transportation problems. Naval Research Logistics, 49(7), 666–685.

    Article  Google Scholar 

  21. Gupta, R. (1978). Solving the generalized transportation problem with constraints. Zeitschrift für angewandte Mathematik und Mechanik, 58(10), 451–458.

    Article  Google Scholar 

  22. Jewell, W. S. (1962). Optimal flow through networks with gains. Operations Research, 10(4), 476–499.

    Article  Google Scholar 

  23. Johnson, E. L. (1966). Networks and basic solutions. Operations Research, 14(4), 619–623.

    Article  Google Scholar 

  24. Langley, R.W. (1973). Continuous and integer generalized network flow problems. Ph.D. thesis, Georgia Institute of Technology.

    Google Scholar 

  25. Laudon, K. C., & Laudon, J. P. (2006). Management information systems. Managing the digital firm (9th ed.). Upper Saddle River, NJ: Pearson-Prentice Hall.

    Google Scholar 

  26. Lourie, J. R. (1964). Topology and computation of the generalized transportation problem. Management Science Series A (Sciences), 11(1), 177–187.

    Google Scholar 

  27. Masoumi, A. H., Yu, M., & Nagurney, A. (2012). A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transportation Research E, 48(4), 762–780.

    Article  Google Scholar 

  28. Nagurney, A., & Masoumi, A. H. (2012). Supply chain network design of a sustainable blood banking system. In T. Boone, V. Jayaraman, & R. Ganeshan (Eds.), Sustainable supply chains: Models, methods and public policy implications (pp. 49–72). London: Springer.

    Chapter  Google Scholar 

  29. Nagurney, A., Masoumi, A. H., & Yu, M. (2012). Supply chain network operations management of a blood banking system with cost and risk minimization. Computational Management Science, 9(2), 205–231.

    Article  Google Scholar 

  30. Nagurney, A., & Nagurney, L. S. (2012). Medical nuclear supply chain design: A tractable network model and computational approach. International Journal of Production Economics, 140(2), 865–874.

    Article  Google Scholar 

  31. Nagurney, A., & Yu, M. (2011). Fashion supply chain management through cost and time minimization from a network perspective. In T.-M. Choi (Ed.), Fashion supply chain management: Industry and business analysis (pp. 1–20). Hershey, Pennsylvania: IGI Global.

    Google Scholar 

  32. Nagurney, A., & Yu, M. (2012). Sustainable fashion supply chain management under oligopolistic competition and brand differentiation. International Journal of Production Economics, 135(2), 532–540.

    Article  Google Scholar 

  33. Nagurney, A., Yu, M., Masoumi, A. H., & Nagurney, L. (2013). Networks against time. Supply chain analytics for perishable products. New York: Springer.

    Book  Google Scholar 

  34. Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30(4), 680–708.

    Article  Google Scholar 

  35. Nielsen, S. S., & Zenios, S. A. (1993). Proximal minimizations with D-functions and the massively parallel solution of linear network programs. Computational Optimization and Applications, 1, 375–398.

    Article  Google Scholar 

  36. Patriksson, M. (2008). A survey on the continuous nonlinear resource allocation problem. European Journal of Operational Research, 185, 1–46.

    Article  Google Scholar 

  37. Qi, L. (1987). The A-Forest Iteration Method for the stochastic generalized transportation problem. Matematics of Operations Research, 12(1), 1–21.

    Article  Google Scholar 

  38. Restrepo, M., & Williamson, D. P. (2009). A simple GAP-canceling algorithm for the generalized maximum flow problem. Mathematical Programming Series A, 118, 47–74.

    Article  Google Scholar 

  39. Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429.

    Article  Google Scholar 

  40. Rowse, J. (1981). Solving the generalized transportation problem. Regional Science and Urban Economics, 11, 57–68.

    Article  Google Scholar 

  41. Sikora, W. (2003). Algorytm generujących ścieżek dla zagadnienia rozdziału [Generating paths algorithm for generalized transportation problem]. In A. Całczyński (Ed.), Metody i zastosowania badań operacyjnych ’2002, Prace naukowe Politechniki Radomskiej (pp. 283–304).

    Google Scholar 

  42. Sikora, W. (2004). Algorytm indeksowy dla zagadnienia rozdziału z kryterium dochodu [Index algorithm for generalized transportation problem with income criterion]. In E Panek (Ed.), Matematyka w Ekonomii. Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu (Vol. 41, pp. 361–375).

    Google Scholar 

  43. Sikora, W. (2008). Algorytm drzewa poprawy dla zagadnienia rozdziału z ograniczoną pojemnością˛ pól [Improvement tree algorithm for capacitated generalized transportation problem]. In W. Sikora (Ed.), Z prac Katedry Badań Operacyjnych. Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu (Vol. 104, pp. 130–146).

    Google Scholar 

  44. Sikora, W. (2010). Dwuetapowe zagadnienie rozdziału z kryterium dochodu [Two-stage generalized transportation problem with income criterion]. In W. Sikora (Ed.), Z prac Katedry Badań Operacyjnych, Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu (Vol. 138, pp. 60–76).

    Google Scholar 

  45. Sikora, W. (2012). Optymalizacja produkcji roślinnej jako nieliniowe zagadnienie rozdziału [Optimization of plant production as a nonlinear generalized transportation problem]. Metody Ilościowe w Badaniach Ekonomicznych, XII(1), 184–193.

    Google Scholar 

  46. Thompson, G. L., & Sethi, A. P. (1986). Solution of constrained generalized transportation problems using the pivot and probe algorithm. Computers & Operations Research, 13(1), 1–9.

    Article  Google Scholar 

  47. Waters, D. (2007). Supply chain risk management. Vulnerability and resilience in logistics. London, Philadelphia: Kogan Page Limited.

    Google Scholar 

  48. Wayne, K. D. (2002). A polynomial combinatorial algorithm for generalized minimum cost flow. Mathematics of Operations Research, 27(3), 445–459.

    Article  Google Scholar 

  49. Yu, M., & Nagurney, A. (2013). Competitive food supply chain networks with application to fresh produce. European Journal of Operational Research, 224(2), 273–282.

    Article  Google Scholar 

  50. Zanoni, S., & Zavanella, L. (2012). Chilled or frozen? Decision strategies for sustainable food supply chains. International Journal of Production Economics, 140(2), 731–736.

    Article  Google Scholar 

  51. Zenios, S. A. (1994). Data parallel computing for network-structured optimization problems. Computational Optimization and Applications, 3, 199–242.

    Article  Google Scholar 

  52. Zenios, S. A., & Censor, Y. (1991). Massively parallel row-action algorithms for some nonlinear transportation problems. SIAM Journal on Optimization, 1(3), 373–400.

    Article  Google Scholar 

Download references

Acknowledgements

The paper was written with financial support from the National Center of Science (Narodowe Centrum Nauki)—the grant no. DEC-2014/13/B/HS4/01552.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Anholcer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anholcer, M., Hinc, T., Kawa, A. (2019). Losses in Transportation—Importance and Methods of Handling. In: Kawa, A., Maryniak, A. (eds) SMART Supply Network. EcoProduction. Springer, Cham. https://doi.org/10.1007/978-3-319-91668-2_6

Download citation

Publish with us

Policies and ethics