Skip to main content

44 Fate of Mediterranean Scleractinian Cold-Water Corals as a Result of Global Climate Change. A Synthesis

  • Chapter
  • First Online:
Mediterranean Cold-Water Corals: Past, Present and Future

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

This chapter addresses the question as to how Mediterranean cold-water corals might fare in the future under anthropogenically-induced global climate change. The focus on three most prominent scleractinian cold-water corals species, the two branching and habitat-forming forms Madrepora oculata, Lophelia pertusa and the solitary cup coral Desmophyllum dianthus. We provide an introduction to climate change principals, highlight the current status of the marine environment with regard to global climate change, and describe how climate change impacts such as ocean acidification are predicted to affect key calcifiers such as scleractinian cold-water corals in the Mediterranean region. A synthesis of the experimental cold-water coral studies conducted to date on climate change impacts: The present state of knowledge reviewed in this chapter takes into account the number of experiments that have been carried out in the Mediterranean as well as for comparative purposes in other parts of the world, to examine the effects of climate change on the corals. We assess the statistical robustness of these experiments and what challenges the presented experiments. A comprehensive multi-study comparison is provided in order to inform on the present state of knowledge, and knowledge gaps, in understanding the effects of global climate change on cold-water corals. Finally we describe what the fate could be for the important scleractinian coral group in the Mediterranean region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adloff F, Somot S, Sevault F, et al (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45:2775–2802. https://doi.org/10.1007/s00382-00015-02507-00383

    Article  Google Scholar 

  • Alessandri A, Felice MD, Zeng N, et al (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4:7211. https://doi.org/10.1038/srep07211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson OF, Guinotte JG, Rowden AA, et al (2016) Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand. Deep-Sea Res Part 1 Oceanogr Res Pap 115:265–292

    Article  Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2002) Steric Sea level variations during 1957–1994: importance of salinity. J Geophys Res 107:8013. https://doi.org/10.1029/2001JC000964

    Article  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag Ser 41:237–276

    Article  CAS  Google Scholar 

  • Arrhenius S (1908) Worlds in the making. The evolution of the Universe, vol. Harper & Brothers Publishers, New York, London, 264 p

    Google Scholar 

  • Bashitialshaaer RAI, Persson KM, Aljaradin M (2011) Estimated future salinity in the Arabian Gulf, the Mediterranean Sea and the Red Sea. Consequences of brine discharge from desalination. Int J Acad Res 3:133–140

    Google Scholar 

  • Bell N, Smith J (1999) Coral growing on North Sea oil rigs. Nature 402:601

    CAS  Google Scholar 

  • Bethoux JP, Gentili B (1996) The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes. J Mar Syst 7:383–394

    Article  Google Scholar 

  • Bethoux JP, Gentili B, Raunet J, et al (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Article  Google Scholar 

  • Béthoux J-P, Gentili B, Tailliez D (1998) Warming and freshwater budget changes in the Mediterranean since the 1940s: their possible relation to the greenhouse effect. Geophys Res Lett 25:1023

    Article  Google Scholar 

  • Bostock HC, Mikaloff-Fletcher SE, Williams MJM (2013) Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans. Biogeosciences 10:6199–6213

    Article  CAS  Google Scholar 

  • Bostock HC, Tracey DM, Currie KI, et al (2015) The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the Southwest Pacific region. Deep-Sea Res Part 1 Oceanogr Res Pap 100:88–104

    Article  CAS  Google Scholar 

  • Bova SC, Herbert TD, Fox-Kemper B (2016) Rapid variations in deep ocean temperature detected in the Holocene. Geophys Res Lett 43:12190–12198. https://doi.org/10.1002/2016GL071450

    Article  Google Scholar 

  • Brooke S, Ross SW, Bane JM, et al (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Res Part 2 Top Stud Oceanogr 92:240–248

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the open ocean margins. Mar Ecol 31:21–50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Burdett HL, Carruthers M, Donohue P, et al (2014) Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Mar Biol 161:1499–1506

    Article  CAS  Google Scholar 

  • Büscher JV, Form AU, Riebesell U (2017) Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00101

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365–365. https://doi.org/10.1038/425365a

    Article  CAS  PubMed  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, et al (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476. https://doi.org/10.1007/s00338-00014-01129-00332

    Article  Google Scholar 

  • Chen X, Tung K-K (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903. https://doi.org/10.1126/science.1254937

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zheng F, Zhu K (2015) Distinctive Ocean interior changes during the recent warming slowdown. Sci Rep 5:14346. https://doi.org/10.11038/srep14346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church JA, White NJ, Konikow LF, et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. https://doi.org/10.11029/12011GL048794

  • Cicerone R, Orr J, Brewer P, et al (2004) The ocean in a high-CO2 world. Oceanography 17:72–78

    Article  Google Scholar 

  • CIESM (2008) Impacts of ocean acidification on biological, chemical and physical systems in the Mediterranean and black seas. In: Briand F (ed) CIESM workshop monographs, Monaco, p 124

    Google Scholar 

  • Clark MR, Althaus F, Schlacher TA, et al (2015) The impacts of deep-sea fisheries on benthic communities: a review. ICES J Mar Sci 73:i59–i69. https://doi.org/10.1093/icesjms/fsv1123

    Article  Google Scholar 

  • Clippele LHD, Gafeira J, Robert K, et al (2016) Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats. Coral Reefs 36:255–268

    PubMed  PubMed Central  Google Scholar 

  • D’Ortenzio F, Antoine D, Marullo S (2008) Satellite-driven modeling of the upper ocean mixed layer and air-sea CO2 flux in the Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 55:405–434

    Article  Google Scholar 

  • Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483. https://doi.org/10.11371/journal.pone.0018483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Wisshak M, Orr JC, et al (2008) Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Res Part 1 Oceanogr Res Pap 55:1048–1062

    Article  Google Scholar 

  • De Mol L, van Rooij D, Pirlet H, et al (2011) Cold-water coral habitats in the Penmarch and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings. Mar Geol 282:40–52

    Article  Google Scholar 

  • Desbruyères DG, Purkey SG, McDonagh EL, et al (2016) Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys Res Lett 43. https://doi.org/10.1002/2016GL070413

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman MJN, et al (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81:449–457

    Google Scholar 

  • England MH, McGregor S, Spence P, et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4:222–227

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Google Scholar 

  • Feely RA, Sabine CL, Byrne RH, et al (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Glob Biogeochem Cycles 26:GB3001

    Google Scholar 

  • Ferrier-Pagès C, Gattuso J-P, Jaubert J (1999) Effect of small variations in salinity on the rates of photosynthesis and respiration of the zooxanthellate coral Stylophora pistillata. Mar Ecol Progr Ser 181:309–314

    Article  Google Scholar 

  • Fillinger L, Richter C (2013) Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ 1:e194. https://doi.org/10.7717/peerj.7194

    Article  PubMed  PubMed Central  Google Scholar 

  • Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Change Biol 18:843–853. https://doi.org/10.1111/j.1365-2486.2011.02583.x

    Article  Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471:1–12

    Article  Google Scholar 

  • Freiwald A, Beuck L, Rüggeberg A, et al (2009) The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22:36–52

    Article  Google Scholar 

  • Fyfe JC, Meehl GA, England MH, et al (2016) Making sense of the early-2000s warming slowdown. Nat Clim Chang 6:224–228. https://doi.org/10.1038/nclimate2938

    Article  Google Scholar 

  • Gammon MJ, Tracey DM, Marriott PM, et al (2018) The physiological response of the deep-sea coral Solenosmilia variabilis to ocean acidification, e5236. PeerJ 6. https://doi.org/10.7717/peerj.5236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gass SE, Willison JHM (2005) An asessment of the distribution of deep-sea corals in Atlantic Canada by using both scientific and local forms of knowledge. In: Freiwald A, Roberts JM (eds). Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 223–245

    Google Scholar 

  • Gattuso J-P, Magnan A, Billé R, et al (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emmissions scenarios. Science 349:aac4722. https://doi.org/10.1126/science.aac4722

    Article  PubMed  CAS  Google Scholar 

  • Georgian SE, DeLeo D, Durkin A, et al (2016a) Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: implications for resilience in a changing ocean. Limnol Oceanogr 61:648–665

    Article  CAS  Google Scholar 

  • Georgian SE, Dupont S, Kurman M, et al (2016b) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37:1345–1359

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. https://doi.org/10.01029/02006GL025734

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Giorgi F, Whetton PH, Jones RG, et al (2001) Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys Res Lett 28:3317–3320

    Article  Google Scholar 

  • Gori A, Orejas C, Madurell T, Bramanti L, et al (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Bigeosciences 10:2049–2060

    Article  Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige SJ, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4:e1606. https://doi.org/10.7717/perj.1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyet C, Hassoun AER, Gemayel E, et al (2016) Thermodynamic forecasts of the Mediterranean Sea acidification. Mediterr Mar Sci 17:508–518

    Article  Google Scholar 

  • Guinotte JM, Orr J, Cairns S, et al (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Hansen J, Sato M (2016) Regional climate change and national responsibilities. Environ Res Lett 11:034009

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, et al (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449

    Article  CAS  Google Scholar 

  • Hassoun AER, Gemayel E, Krasakopoulou E, et al (2015) Acidification of the Mediterranean Sea from anthropogenic carbon penetration. Deep-Sea Res Part 2 Top Stud Oceanogr 102:1–15

    Article  CAS  Google Scholar 

  • Hausfather Z, Cowtan K, Clarke DC, et al (2017) Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci Adv 3:e1601201

    Article  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2014) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr 99:27–35. https://doi.org/10.1016/j.dsr1012.2013.1007.1005

    Article  CAS  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hourigan TF (2009) Managing fishery impacts on deep-water coral ecosystems of the USA: emerging best practices. Mar Ecol Progr Ser 397:333–340

    Article  Google Scholar 

  • Hovland M, Vasshus S, Indreeide A, et al (2002) Mapping and imaging deep-sea coral reefs off Norway, 1982–2000. Hydrobiologia 471:13–17

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, et al (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Jantzen C, Häussermann V, Försterra G, et al (2013) Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol 160:2597–2607. https://doi.org/10.1007/s00227-00013-02254-00220

    Article  CAS  Google Scholar 

  • Karl TR, Arguez A, Huang B, et al (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA, et al (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 715–729

    Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, et al (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide to future research. Report of a workshop sponsored by the National Science Foundation, the National Oceanographic and atmospheric administration, And the US geological survey 96 p. Available at: www.isseucaredu/Florida/

    Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. https://doi.org/10.1038/nature12534

    Article  CAS  PubMed  Google Scholar 

  • Kurman MD, Gómez CE, Georgian SE, et al (2017) Intra-specific variation reveals potential for adaptation to ocean acidification in a cold-water coral from the Gulf of Mexico. Front Mar Sci 4:111. https://doi.org/10.3389/fmars.2017.00111

  • Landschützer P, Gruber N, Bakker DCE (2016) Decadal variations and trends of the global ocean carbon sink. Global Biogeochem Cycles 30:1396. https://doi.org/10.1002/2015GB005359

    Article  CAS  Google Scholar 

  • Law CS, Rickard GJ, Mikaloff-Fletcher SE, et al (2016) The New Zealand EEZ and south West Pacific. Synthesis report RA2, marine case study. Climate Changes, Impacts and Implications (CCII) for New Zealand to 2100. MBIE contract C01X1225, 41pp

    Google Scholar 

  • Levermann A, Clark PU, Marzeion B, et al (2013) The multimillennial sea-level commitment of global warming. Proc Natl Acad Sci 110:13745–13750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitus S, Antonov JI, Boyer RP, et al (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, 1955–2010. Geophys Res Lett 39:L10603 https://doi.org/10.11029/12012GL051106

  • Lewandowsky S, Cook J, Lloyd E (2016) The ‘Alice in Wonderland’ mechanics of the rejection of (climate) science: simulating coherence by consiracism. Synthese 195:175–196. https://doi.org/10.1007/s11229-11016-11198-11226

  • Llovel W, Willis K, Landerer FW, et al (2014) Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat Clim Chang 4:1031–1035. https://doi.org/10.1038/nclimate2387

    Article  Google Scholar 

  • Lunden JJ, Nicholl CGM, Sears CR, et al (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Fron Mar Sci 1:78. https://doi.org/10.3389/fmars.2014.00078

    Article  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Article  CAS  Google Scholar 

  • Maier C, Watremez P, Taviani M, et al (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc Lond 279:1713–1723. https://doi.org/10.1098/rspb.2011.1763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maier C, Bils F, Weinbauer M, Watremez P, et al (2013a) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:5671–5680. https://doi.org/10.5194/bg-5610-5671-2013

    Article  Google Scholar 

  • Maier C, Schubert A, Berzunza Sànchez MM, et al (2013b) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8:e2655. https://doi.org/10.1371/journal.pone.0062655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208

    Article  PubMed  Google Scholar 

  • Malanotte-Rizzoli P, Font J, García-Ladona E, et al (2014) Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research. Ocean Sci 10:281–322

    Article  CAS  Google Scholar 

  • Mariotti A, Zeng N, Yoon J-H, et al (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001 10.041088/041748-049326/044003/044004/044001

    Article  Google Scholar 

  • Mastrototaro F, D’Onghia G, Corriero G, et al (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430

    Article  Google Scholar 

  • McCulloch M, Trotter J, Montagna P, et al (2012) Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34. https://doi.org/10.1016/j.gca.2012.1003.1027

    Article  CAS  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Chang 4:888–892. https://doi.org/10.1038/nclimate2330

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, et al (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 1:360–364. https://doi.org/10.1038/nclimate1229

    Article  Google Scholar 

  • Mikaloff-Fletcher SE, Gruber N, Jacobson AR, et al (2006) Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem Cycles 20. https://doi.org/10.1029/2005GB002530

    Article  CAS  Google Scholar 

  • Millero FJ, Morse J, Chen CT (1979) The carbonate system in the western Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 26A:1395–1404

    Article  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 5:59–67

    Article  Google Scholar 

  • Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013a) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749. https://doi.org/10.1007/s00338-00013-01011-00337

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013b) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41

    Article  CAS  Google Scholar 

  • Nykjaer L (2009) Mediterranean Sea surface warming 1985–2006. Clim Res 39:11–17

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, et al (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 397:37–51

    Article  Google Scholar 

  • Orr JC, Maier-Reimer E, Mikolajewicz U, et al (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem Cycles 15:43–60

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, et al (2005a) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Orr JC, Pantoja S, Pörtner HO (2005b) Introduction to special section: the ocean in a high-CO2 world. J Geophys Res 110:C09S01. https://doi.org/10.1029/2005JC003086

  • Pierce DS, Gleckler PJ, Barnett TP, et al (2012) The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys Res Lett 39:L21704. https://doi.org/10.21029/22012GL053389

    Article  Google Scholar 

  • Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Clim 23:6336–6351. https://doi.org/10.1175/2010JCLI3682.6331

    Article  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27. https://doi.org/10.3402/tellusa.v9i1.9075

    Article  CAS  Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, et al (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Riebesell U, Gattuso JP (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14

    Article  CAS  Google Scholar 

  • Rixen M, Beckers JM, Levitus S, et al (2005) The western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32:L12608

    Article  Google Scholar 

  • Roberts JM, Davies AJ, Henry LA, et al (2009) Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrograqphy and biodiversity. Mar Ecol Progr Ser 397:139–151

    Article  CAS  Google Scholar 

  • Roberts JM, Murray F, Anagnostou E, et al (2016) Cold-water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems? In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer, Cham, pp 593–606

    Chapter  Google Scholar 

  • Rodolfo-Metalpa R, Montagna P, Aliani S, et al (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob Chang Biol 21:2238–2248

    Article  PubMed  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Article  Google Scholar 

  • Rowden AA, Guinotte JM, Baird SJ, et al (2013) Developing predictive models for the distribution of vulnerable marine ecosystems in the South Pacific region. New Zealand aquatic environment and biodiversity report 120:70p

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Savini A, Vertino A, Marchese F, et al (2014) Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e87108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith AM, Williams MJM (2015) The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest pacific region. Deep-Sea Res Part 1 Oceanogr Res Pap 100:88–104

    Article  CAS  Google Scholar 

  • Song J, Wang Y, Tang J (2016) A hiatus of the greenhouse effect. Sci Rep 6:33315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumida PYG, Yoshinaga MY, Madureira LASP, et al (2004) Seabed pockmarks associated with Deepwater corals off SE Brazilian continental slope, Santos Basin. Mar Geol 207:159–167

    Article  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • Thresher RE, Tilbrook B, Fallon S, et al (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Progr Ser 442:87–99

    Article  Google Scholar 

  • Tittensor DP, Baco AR, Hall-Spencer JM, et al (2010) Seamounts as refugia from ocean acidification for cold-water stony corals. Mar Ecol 31:212–225

    Article  Google Scholar 

  • Touratier F, Goyet C (2009) Decadal evolution of anthropogenic CO2 in the northwestern Mediterranean Sea from the mid-1990s to the mid-2000s. Deep-Sea Res Part 1 Oceanogr Res Pap 56:1708–1716

    Article  CAS  Google Scholar 

  • Touratier F, Goyet C (2011) Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 58:1–15

    Article  CAS  Google Scholar 

  • Tracey DM, Rowden AA, Mackay KA, et al (2011) Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar Ecol Progr Ser 430:1–22

    Article  Google Scholar 

  • Turley CM (1999) The changing Mediterranean Sea – a sensitive ecosystem? Progr Oceanogr 44:387–400

    Article  Google Scholar 

  • Turley CM, Roberts JM, Guinotte JM (2007) Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs 26:445–448

    Article  Google Scholar 

  • Vargas-Yáñez M, Moya F, Tel E, et al (2009) Warming and salting in the western Mediterranean during the second half of the 20th century: inconsistencies, unknown and the effect of data processing. Sci Mar 73:7–28

    Article  CAS  Google Scholar 

  • Wall M, Ragozzola F, Foster LC, et al (2015) pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain growth in aragonite undersaturated conditions. Biogeosciences 12:6869–6880

    Article  CAS  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Waller RG, Tyler PA, Gage JD (2005) Sexual reproduction in three hermaphroditic deep-sea Caryophyllia species (Anthozoa: Scleractinia) from the NE Atlantic Ocean. Coral Reefs 24:594–602

    Article  Google Scholar 

  • Wheeler AJ, Beyer A, Freiwald A, et al (2007) Morphology and environment of cold-water coral carbonate mounds on the NW European margin. Int J Earth Sci 96:37–56

    Article  CAS  Google Scholar 

  • Yan X-H, Boyer T, Trenberth K, et al (2016) The global warming hiatus: slowdown or redistribution. Earth’s Future 4:472–482. https://doi.org/10.1002/2016EF000417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeebe RE, Ridgwell A, Zachos JC (2016) Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat Geosci 9:325–329

    Article  CAS  Google Scholar 

  • Zibrowius H, Gili J-M (1990) Deep-water Scleractinia (Cnidaria: Anthozoa) from Namibia, South Africa, and Walvis ridge, southeastern Atlantic. Sci Mar 54:19–46

    Google Scholar 

Cross References

  • Angeletti L, Bargain A, Campiani E, et al (this volume) Cold-water coral habitat mapping in the Mediterranean Sea: methodologies and perspectives

    Google Scholar 

  • Hayes D, Schroeder K, Poulain, PM, et al (this volume) Review of the circulation and characteristics of intermediate water masses of the Mediterranean--implications for cold-water coral habitats

    Google Scholar 

  • Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water corals

    Google Scholar 

  • Lo Iacono C, Savini A, Huvenne VAI, et al (this volume) Habitat mapping of cold-water corals in the Mediterranean Sea

    Google Scholar 

  • Orejas C, Taviani M, Ambroso S, et al (this volume) Cold-water coral in aquaria: advances and challenges. A focus on the Mediterranean

    Google Scholar 

  • Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water corals

    Google Scholar 

  • Skliris N (this volume) The Mediterranean is getting saltier: from the past to the future

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the reviewers Marina Carreiro-Silva and Di Tracey for constructive criticism, with special thanks to Di for the additional time put into editing the English and providing additional references broadening the geographic range with respect to CWCs and climate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maier, C., Weinbauer, M.G., Gattuso, JP. (2019). 44 Fate of Mediterranean Scleractinian Cold-Water Corals as a Result of Global Climate Change. A Synthesis. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_44

Download citation

Publish with us

Policies and ethics