Skip to main content

2D Material Production Methods

  • Chapter
  • First Online:
Printing of Graphene and Related 2D Materials

Abstract

The widespread use of printing of 2D materials in their relevant applications is highly dependent on the cost and scalability of their methods of production. This chapter serves as an introduction to the key methods for 2D material production and characterisation. Methods such as chemical vapour deposition, plasma cracking of hydrocarbons, intercalation, chemical exfoliation and liquid phase exfoliation are described and their relative merits are discussed. Particular emphasis is given to the 2D materials relevant to ink production. The latter half of the chapter discusses commonly used processing steps and characterisation methods for the 2D materials and their respective roles in qualifying and quantifying the material produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005)

    Article  Google Scholar 

  4. Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)

    Article  Google Scholar 

  5. J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015)

    Article  Google Scholar 

  6. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41(3), 763–777 (2006)

    Article  Google Scholar 

  7. G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4), 3468–3480 (2012)

    Article  Google Scholar 

  8. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7(11), 10344–10353 (2013)

    Article  Google Scholar 

  9. R.F. Frindt, A.D. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273(1352), 69–83 (1963)

    Article  Google Scholar 

  10. R.F. Frindt, Optical absorption of a few unit-cell layers of MoS2. Phys. Rev. 140(2A), A536–A539 (1965)

    Article  Google Scholar 

  11. R.F. Frindt, Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928–1929 (1966)

    Article  Google Scholar 

  12. X. Lu, M. Yu, H. Huang, R.S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3), 269–272 (1999)

    Article  Google Scholar 

  13. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  14. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)

    Article  Google Scholar 

  15. X. Chen, B. Wu, Y. Liu, Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45(8), 2057–2074 (2016)

    Article  Google Scholar 

  16. Y. Chen, X.L. Gong, J.-G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3(8), 1500343 (2016)

    Article  Google Scholar 

  17. N. Petrone, C.R. Dean, I. Meric, A.M. van der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12(6), 2751–2756 (2012)

    Article  Google Scholar 

  18. G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste. ACS Nano 5(9), 7601–7607 (2011)

    Article  Google Scholar 

  19. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)

    Article  Google Scholar 

  20. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012)

    Article  Google Scholar 

  21. Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, M. Dresselhaus, T. Palacios, L.-J. Li, J. Kong, Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13(4), 1852–1857 (2013)

    Article  Google Scholar 

  22. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754–759 (2013)

    Article  Google Scholar 

  23. Z.J. Qi, S.J. Hong, J.A. Rodríguez-Manzo, N.J. Kybert, R. Gudibande, M. Drndić, Y.W. Park, A.T. Charlie Johnson, Electronic transport in heterostructures of chemical vapor deposited graphene and hexagonal boron nitride. Small 11(12), 1402–1408 (2015)

    Article  Google Scholar 

  24. W.J. Zhang, C.Y. Chan, K.M. Chan, I. Bello, Y. Lifshitz, S.T. Lee, Deposition of large-area, high-quality cubic boron nitride films by ECR-enhanced microwave-plasma CVD. Appl. Phys. Mater. Sci. Process. 76(6), 953–955 (2003)

    Article  Google Scholar 

  25. S.J. Cartamil-Bueno, M. Cavalieri, R. Wang, S. Houri, S. Hofmann, H.S.J. van der Zant, Mechanical characterization and cleaning of CVD single-layer h-BN resonators. NPJ 2D Mater. Appl. 1(1), 16 (2017)

    Google Scholar 

  26. A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, L. Cao, Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8(11), 11522–11528 (2014)

    Article  Google Scholar 

  27. G.H. Han, J.A. Rodríguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner, Z.J. Qi, E.N. Dattoli, A.M. Rappe, M. Drndic, A.T.C. Johnson, Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013)

    Article  Google Scholar 

  28. M. Wang, S.K. Jang, W.J. Jang, M. Kim, S.Y. Park, S.W. Kim, S.J. Kahng, J.Y. Choi, R.S. Ruoff, Y.J. Song, S. Lee, A platform for large-scale graphene electronics - CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 25(19), 2746–2752 (2013)

    Article  Google Scholar 

  29. K.H. Lee, H.J. Shin, J. Lee, I.Y. Lee, G.H. Kim, J.Y. Choi, S.W. Kim, Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12(2), 714–718 (2012)

    Article  Google Scholar 

  30. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaust, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583–8590 (2012)

    Article  Google Scholar 

  31. B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017)

    Article  Google Scholar 

  32. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102(2), 023112 (2013)

    Article  Google Scholar 

  33. J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C.W. Magnuson, R.S. Ruoff, L. Colombo, R.M. Wallace, E.M. Vogel, Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6(4), 3224–3229 (2012)

    Article  Google Scholar 

  34. L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015)

    Article  Google Scholar 

  35. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K.P. Loh, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12), 9927–9933 (2011)

    Article  Google Scholar 

  36. H. Zhang, T. Cao, Y. Cheng, Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86, 38–45 (2015)

    Article  Google Scholar 

  37. M. Tian, S. Batty, C. Shang, Synthesis of nanostructured carbons by the microwave plasma cracking of methane. Carbon 51(1), 243–248 (2013)

    Article  Google Scholar 

  38. K.S. Kim, S.H. Hong, K.-S. Lee, W.T. Ju, Continuous synthesis of nanostructured sheetlike carbons by thermal plasma decomposition of methane. IEEE Trans. Plasma Sci. 35(2), 434–443 (2007)

    Article  Google Scholar 

  39. R. Pristavita, J.L. Meunier, D. Berk, Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem. Plasma Process. 31(2), 393–403 (2011)

    Article  Google Scholar 

  40. A. Dato, V. Radmilovic, Z. Lee, J. Phillips, M. Frenklach, Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8(7), 2012–2016 (2008)

    Article  Google Scholar 

  41. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013)

    Article  Google Scholar 

  42. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30(2), 139–326 (1981)

    Article  Google Scholar 

  43. P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21(4), 457–461 (1986)

    Article  Google Scholar 

  44. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3(9), 538–542 (2008)

    Article  Google Scholar 

  45. C. Valles, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, Alain Pénicaud, Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130(47), 15802–15804 (2008)

    Article  Google Scholar 

  46. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51(36), 9052–9056 (2012)

    Article  Google Scholar 

  47. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu, K. Ping Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014)

    Google Scholar 

  48. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)

    Article  Google Scholar 

  49. Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3(4), 452–463 (2016)

    Article  Google Scholar 

  50. J. Liu, H. Yang, S.G. Zhen, C.K. Poh, A. Chaurasia, J. Luo, X. Wu, E.K.L. Yeow, N.G. Sahoo, J. Lin, Z. Shen, A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv. 3(29), 11745–11750 (2013)

    Article  Google Scholar 

  51. Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23(37), 4684–4693 (2013)

    Article  Google Scholar 

  52. K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Müllen, Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7(4), 3598–3606 (2013)

    Article  Google Scholar 

  53. K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136(16), 6083–6091 (2014)

    Article  Google Scholar 

  54. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. 50(47), 11093–11097 (2011)

    Article  Google Scholar 

  55. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5(3), 2332–2339 (2011)

    Article  Google Scholar 

  56. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  Google Scholar 

  57. J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.-Y. Choi, J.M. Kim, J.-B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21(43), 4383–4387 (2009)

    Article  Google Scholar 

  58. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  59. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Article  Google Scholar 

  60. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)

    Article  Google Scholar 

  61. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  62. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)

    Article  Google Scholar 

  63. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277 (2010)

    Article  Google Scholar 

  64. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  Google Scholar 

  65. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)

    Article  Google Scholar 

  66. A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110(45), 22328–22338 (2006)

    Article  Google Scholar 

  67. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679–1682 (2008)

    Article  Google Scholar 

  68. S. Wang, P.K. Ang, Z. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2010)

    Article  Google Scholar 

  69. L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)

    Article  Google Scholar 

  70. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)

    Article  Google Scholar 

  71. J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, L. Zhi, Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24(21), 2874–2878 (2012)

    Article  Google Scholar 

  72. Y. Yang, Z. Liu, Z. Yin, Z. Du, L. Xie, M. Yi, J. Liu, W. Huang, Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. RSC Adv. 4(98), 55671–55676 (2014)

    Article  Google Scholar 

  73. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  74. J. Xu, J. Liu, S. Wu, Q.-H. Yang, P. Wang, Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express 20(14), 15474–15480 (2012)

    Article  Google Scholar 

  75. Y.J. Noh, H.-I. Joh, J. Yu, S.H. Hwang, S. Lee, C.H. Lee, S.Y. Kim, J.R. Youn, Ultra-high dispersion of graphene in polymer composite via solvent free fabrication and functionalization. Sci. Rep. 5, 9141 (2015)

    Google Scholar 

  76. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)

    Article  Google Scholar 

  77. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011)

    Article  Google Scholar 

  78. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Article  Google Scholar 

  79. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009)

    Article  Google Scholar 

  80. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010)

    Article  Google Scholar 

  81. Y.B. Tan, J.-M. Lee, Graphene for supercapacitor applications. J. Mater. Chem. A 1(47), 14814 (2013)

    Article  Google Scholar 

  82. N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4(2), 887–894 (2010)

    Article  Google Scholar 

  83. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010)

    Article  Google Scholar 

  84. K.K.H. De Silva, H.-H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017)

    Article  Google Scholar 

  85. L.G. Guex, B. Sacchi, K.F. Peuvot, R.L. Andersson, A.M. Pourrahimi, V. Ström, S. Farris, R.T. Olsson, Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27), 9562–9571 (2017)

    Article  Google Scholar 

  86. F.J. Tölle, M. Fabritius, R. Mülhaupt, Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 22, 1136–1144 (2012)

    Article  Google Scholar 

  87. T. Hasan, V. Scardaci, P. Tan, A.G. Rozhin, W.I. Milne, A.C. Ferrari, Stabilization and “debundling” of single-wall carbon nanotube dispersions in N-Methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111(34), 12594–12602 (2007)

    Article  Google Scholar 

  88. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, Nanotube-polymer composites for ultrafast photonics. Adv. Mater. 21(38), 3874–3899 (2009)

    Article  Google Scholar 

  89. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  Google Scholar 

  90. J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)

    Article  Google Scholar 

  91. F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28(29), 6136–6166 (2016)

    Article  Google Scholar 

  92. J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)

    Article  Google Scholar 

  93. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011)

    Article  Google Scholar 

  94. D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q.M. Ramasse, N. McEvoy, W.J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D.D. O’Regan, G.S. Duesberg, V. Nicolosi, J.N. Coleman, Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015)

    Google Scholar 

  95. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 247(11–12), 2953–2957 (2010)

    Article  Google Scholar 

  96. S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)

    Google Scholar 

  97. R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)

    Google Scholar 

  98. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)

    Article  Google Scholar 

  99. A. Harvey, J.B. Boland, I. Godwin, A.G. Kelly, B.M. Szydłowska, G. Murtaza, A. Thomas, D.J. Lewis, P. O’Brien, J.N. Coleman, Exploring the versatility of liquid phase exfoliation: producing 2D nanosheets from talcum powder, cat litter and beach sand. 2D Mater. 4(2), 25054 (2017)

    Article  Google Scholar 

  100. J.M. Hughes, D. Aherne, J.N. Coleman, Generalizing solubility parameter theory to apply to one- and two-dimensional solutes and to incorporate dipolar interactions. J. Appl. Polym. Sci. 127(6), 4483–4491 (2013)

    Article  Google Scholar 

  101. K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O’Brien, E.K. McGuire, B.M. Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)

    Article  Google Scholar 

  102. E. Varrla, C. Backes, K.R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, J.N. Coleman, Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27(3), 1129–1139 (2015)

    Article  Google Scholar 

  103. E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley, J.N. Coleman, Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6(20), 11810–11819 (2014)

    Article  Google Scholar 

  104. J. Shang, F. Xue, E. Ding, The facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization. Chem. Commun. 51(87), 15811–15814 (2015)

    Article  Google Scholar 

  105. F. Xue, E. Ding, J. Shang, Efficient exfoliation of molybdenum disulphide nanosheets by a high-pressure homogeniser. Micro Nano Lett. 10(10), 589–591 (2015)

    Google Scholar 

  106. T.J. Nacken, C. Damm, J. Walter, A. Rüger, W. Peukert, Delamination of graphite in a high pressure homogenizer. RSC Adv. 5(71), 57328–57338 (2015)

    Article  Google Scholar 

  107. P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11(3), 2742–2755 (2017)

    Article  Google Scholar 

  108. M.A. Ibrahem, T.-W. Lan, J.K. Huang, Y.-Y. Chen, K.-H. Wei, L.-J. Li, C.W. Chu. High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. RSC Adv. 3(32), 13193 (2013)

    Article  Google Scholar 

  109. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20(28), 5817 (2010)

    Article  Google Scholar 

  110. Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, C.-P. Wong, Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22(27), 13494 (2012)

    Article  Google Scholar 

  111. L.H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, A.M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21(32), 11862 (2011)

    Article  Google Scholar 

  112. T.J. Mason, J.P. Lorimer, Applied Sonochemistry (Wiley-VCH, Weinheim, 2002)

    Google Scholar 

  113. S.Y. Tang, P. Shridharan, M. Sivakumar, Impact of process parameters in the generation of novel aspirin nanoemulsions - comparative studies between ultrasound cavitation and microfluidizer. Ultrason. Sonochem. 20(1), 485–497 (2013)

    Article  Google Scholar 

  114. A. Posch, 2D PAGE: Sample Preparation and Fractionation (Humana Press, Clifton, 2008)

    Google Scholar 

  115. T. Panagiotou, S.V. Mesite, J.M. Bernard, K.J. Chomistek, R.J. Fisher, Production of polymer nanosuspensions using microfluidizer processor based technologies, in NSTI-Nanotech 2008, vol. 1 (2008), pp. 688–691

    Google Scholar 

  116. T. Lajunen, K. Hisazumi, T. Kanazawa, H. Okada, Y. Seta, M. Yliperttula, A. Urtti, Y. Takashima, Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur. J. Pharm. Sci. 62, 23–32 (2014)

    Article  Google Scholar 

  117. S.M. Jafari, Y. He, B. Bhandari, Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng. 82(4), 478–488 (2007)

    Article  Google Scholar 

  118. D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon, S.H. Hong, Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015)

    Article  Google Scholar 

  119. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, A.C. Ferrari, Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi 247(11), 2953–2957 (2010)

    Article  Google Scholar 

  120. Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, J.N. Coleman, Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5), 3208–3213 (2010)

    Article  Google Scholar 

  121. C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook (CRC Press, West Palm Beach, 2007)

    Google Scholar 

  122. A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)

    Article  Google Scholar 

  123. C.L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, 2nd edn. (Elsevier Science, New York , 2015)

    Chapter  Google Scholar 

  124. M. Yi, Z. Shen, S. Ma, X. Zhang, A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J. Nanoparticle Res. 14(8), 1003 (2012)

    Google Scholar 

  125. K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. 50(46), 10839–10842 (2011)

    Article  Google Scholar 

  126. R.C.T. Howe, F. Torrisi, F. Tomarchio, S. Mignuzzi, A.C. Ferrari, T. Hasan, Large-scale exfoliation of molybdenum disulphide in solvent mixtures, in ImagineNano (2013)

    Google Scholar 

  127. E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)

    Article  Google Scholar 

  128. E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)

    Article  Google Scholar 

  129. D. Dodoo-Arhin, R.C.T. Howe, G. Hu, Y. Zhang, P. Hiralal, A. Bello, G. Amaratunga, T. Hasan, Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon 105, 33–41 (2016)

    Article  Google Scholar 

  130. F. Bonaccorso, Z. Sun, Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics. Opt. Mater. Express 4(1), 63–78 (2014)

    Article  Google Scholar 

  131. H.-J. Butt, K. Graff, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)

    Google Scholar 

  132. M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th edn. (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  133. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23(34), 3944–3948 (2011)

    Article  Google Scholar 

  134. R.C.T. Howe, R.I. Woodward, G. Hu, Z. Yang, E.J.R. Kelleher, T. Hasan, Surfactant-aided exfoliation of molybdenum disulfide for ultrafast pulse generation through edge-state saturable absorption. Phys. Status Solidi 253(5), 911–917 (2016)

    Article  Google Scholar 

  135. P. Ramalingam, S.T. Pusuluri, S. Periasamy, R. Veerabahu, J. Kulandaivel, Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv. 3, 2369 (2013)

    Article  Google Scholar 

  136. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)

    Article  Google Scholar 

  137. M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)

    Article  Google Scholar 

  138. A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)

    Article  Google Scholar 

  139. M.S. Arnold, S.I. Stupp, M.C. Hersam, Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005)

    Article  Google Scholar 

  140. G. Hu, T. Albrow-Owen, X. Jin, A. Ali, G. Hu, C.T. Richard, Z. Yang, X. Zhu, R. Woodward, T.-C. Wu, H. Jussila, P. Tan, Z. Sun, E. Kelleher, Y. Xu, M. Zhang, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017)

    Article  Google Scholar 

  141. U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27(15), 9077–9082 (2011)

    Article  Google Scholar 

  142. J.N. Coleman, Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 46(1), 14–22 (2013)

    Article  Google Scholar 

  143. A. Ciesielski, P. Samor, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)

    Article  Google Scholar 

  144. J.N. Coleman, Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19(23), 3680–3695 (2009)

    Article  Google Scholar 

  145. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A.E. Sichirollo, Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl. Opt. 28(12), 2318 (1989)

    Article  Google Scholar 

  146. L. Yang, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  147. C. Backes, R.J. Smith, N. McEvoy, N.C. Berner, D. McCloskey, H.C. Nerl, A. O’Neill, P.J. King, T. Higgins, D. Hanlon, N. Scheuschner, J. Maultzsch, L. Houben, G.S. Duesberg, J.F. Donegan, V. Nicolosi, J.N. Coleman, Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat. Commun. 5, 4576 (2014)

    Article  Google Scholar 

  148. K.S. Aneja, S. Bohm, A.S. Khanna, H.L. Mallika Bohm, Graphene based anticorrosive coatings for Cr(VI) replacement. Nanoscale 7(42), 17879–17888 (2015)

    Article  Google Scholar 

  149. R. Erni, M.D. Rossell, C. Kisielowski, Ulrich Dahmen, Atomic-resolution imaging with a Sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)

    Google Scholar 

  150. N. Wang, Q. Xu, S. Xu, Y. Qi, M. Chen, H. Li, High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system. Sci. Rep. 5, 16764 (2015)

    Article  Google Scholar 

  151. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)***

    Article  Google Scholar 

  152. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1–2), 101–109 (2007)

    Article  Google Scholar 

  153. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    Article  Google Scholar 

  154. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Google Scholar 

  155. S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014)

    Article  Google Scholar 

  156. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22(7), 1385–1390 (2012)

    Article  Google Scholar 

  157. C. Backes, K.R. Paton, D. Hanlon, S. Yuan, M.I. Katsnelson, J. Houston, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 8(7), 4311–4323 (2016)

    Article  Google Scholar 

  158. A.C Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)

    Article  Google Scholar 

  159. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)

    Article  Google Scholar 

  160. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015)

    Article  Google Scholar 

  161. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010)

    Article  Google Scholar 

  162. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015)

    Article  Google Scholar 

  163. L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11(8), 3190–3196 (2011)

    Article  Google Scholar 

  164. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47–57 (2007)

    Article  Google Scholar 

  165. B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 85(16), 161403(r) (2012)

    Google Scholar 

  166. Y. Liu, Z. Liu, W.S. Lew, Q.J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects. Nanoscale Res. Lett. 8(1), 335 (2013)

    Article  Google Scholar 

  167. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)

    Article  Google Scholar 

  168. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Google Scholar 

  169. X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, P.-H. Tan, Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 27(19), 1604468 (2017)

    Article  Google Scholar 

  170. F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S.J. Jung, F. Bonaccorso, P.J. Paul, D.P. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)

    Article  Google Scholar 

  171. C. Casiraghi, Raman spectroscopy of graphene edges. Nano Lett. 9(4), 1433–1441 (2009)

    Article  Google Scholar 

  172. U. Khan, A. O’Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50(2), 470–475 (2012)

    Article  Google Scholar 

  173. W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 5(20), 9677–9683 (2013)

    Article  Google Scholar 

  174. X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 87(11), 115413 (2013)

    Google Scholar 

  175. M. Zhang, R.C.T. Howe, R.I. Woodward, E.J.R. Kelleher, F. Torrisi, G. Hu, S.V. Popov, J.R. Taylor, T. Hasan, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res. 8(5), 1522–1534 (2015)

    Article  Google Scholar 

  176. L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6(10), 5394–5401 (2014)

    Article  Google Scholar 

  177. D. Li, H. Jussila, L. Karvonen, G. Ye, H. Lipsanen, X. Chen, Z. Sun, Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep. 5, 15899 (2015)

    Article  Google Scholar 

  178. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, J.V. Alvarez, H.W. Zandbergen, J.J. Palacios, H.S.J. van der Zant, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)

    Article  Google Scholar 

  179. X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015)

    Article  Google Scholar 

  180. H. Yang, H. Jussila, A. Autere, H.-P. Komsa, G. Ye, X. Chen, T. Hasan, Z. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon. 4(12), 3023–3030 (2017)

    Article  Google Scholar 

  181. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)

    Article  Google Scholar 

  182. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9(10), 840–845 (2010)

    Article  Google Scholar 

  183. S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5, 10160 (2015)

    Article  Google Scholar 

  184. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). J. Graphene 6(1), 73348 (2017)

    Google Scholar 

  185. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115(34), 17009–17019 (2011)

    Article  Google Scholar 

  186. S. Yumitori, Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 35(1), 139–146 (2000)

    Article  Google Scholar 

  187. K.P. Dhakal, D.L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y.H. Lee, J. Kim, Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6(21), 13028–13035 (2014)

    Article  Google Scholar 

  188. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4), 505–509 (2010)

    Article  Google Scholar 

  189. T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)

    Article  Google Scholar 

  190. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)

    MATH  Google Scholar 

  191. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, L.W.T. et al. (2019). 2D Material Production Methods. In: Printing of Graphene and Related 2D Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-91572-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91572-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91571-5

  • Online ISBN: 978-3-319-91572-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics