Skip to main content

Negative Space-Based Population Initialization Algorithm (NSPIA)

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Included in the following conference series:

Abstract

There are many different varieties of population-based algorithms. They are interesting techniques for investigating of the search space of solutions and can be used, among others, to solve optimization problems. They usually start from initialization of a population of individuals, each of which encodes parameters of a single solution to the problem under consideration. After initialization, the preselected individuals are processed in a way that depends on the specifics of the algorithm. Therefore, properly implemented population initialization can significantly improve the algorithm’s operation and increase the quality of obtained results. This article describes a new population initialization algorithm. Its characteristic feature is the marginalization of those areas of the search space, in which once localized individuals were assessed as not satisfying. The proposed algorithm is of particular importance for problems in which no information is available that can improve the search procedure (black-box optimization). To test the proposed algorithm simulations were carried out using well-known benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M., Pant, M., Abraham, A.: Unconventional initialization methods for differential evolution. Appl. Math. Comput. 219(9), 4474–4494 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 262–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_23

    Chapter  Google Scholar 

  3. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu, M.: Quasi-oppositional differential evolution for optimal reactive power dispatch. Electr. Power Energy Syst. 78, 29–40 (2016)

    Article  Google Scholar 

  5. Bilski, J., Smoląg, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  6. Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_6

    Chapter  Google Scholar 

  7. Bilski, J., Wilamowski, B.M.: Parallel Levenberg-Marquardt algorithm without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 25–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_3

    Chapter  Google Scholar 

  8. Bobulski, J.: 2DHMM-based face recognition method. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 7. AISC, vol. 389, pp. 11–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23814-2_2

    Chapter  Google Scholar 

  9. Bradley, T., Toit, J.D., Tong, R., Giles, M., Woodhams, P.: Parallelization techniques for random numbers generators. In: GPU Computing Gems Emerald Edition, pp. 231–246 (2011)

    Chapter  Google Scholar 

  10. Bramlette, M.F.: Initialization, mutation and selection methods in genetic algorithms for function optimization. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 100–107 (1991)

    Google Scholar 

  11. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)

    Article  Google Scholar 

  12. Cheng, J., Ruzdzel, M.J.: Computational investigation of low-discrepancy sequences in simulation algorithms for Bayesian networks. In: Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 72–81 (2000)

    Google Scholar 

  13. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen Syst 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  14. Diggle, P.J.: Statistical Analysis of Spatial Point Patterns (Mathematics in Biology). Academic Press, Cambridge (1983)

    MATH  Google Scholar 

  15. Dziwiński, P., Bartczuk, Ł., Tingwen, H.: A method for non-linear modelling based on the capabilities of PSO and GA algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 221–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_21

    Chapter  Google Scholar 

  16. Galkowski, T., Pawlak, M.: Nonparametric Estimation of edge values of regression functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016, Part II. LNCS (LNAI), vol. 9693, pp. 49–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_5

    Chapter  Google Scholar 

  17. Gałkowski, T., Rutkowski, L.: Nonparametric recovery of multivariate functions with applications to system identification. Proc. IEEE 73, 942–943 (1985)

    Article  Google Scholar 

  18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  19. Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann, Los Altos (1987)

    Google Scholar 

  20. Iba, H.: Random tree generation for genetic programming. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 144–153. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61723-X_978

    Chapter  Google Scholar 

  21. Kazimipour, B., Li, X., Qi, A.K.: A review of population initialization techniques for evolutionary algorithms. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation (CEC), 6–11 July, pp. 2585–2592 (2014)

    Google Scholar 

  22. Kazimipour, B., Li, X., Qin, A.K.: Effects of population initialization on differential evolution for large scale optimization. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation (CEC), 6–11 July, pp. 2404–2411 (2014)

    Google Scholar 

  23. Khan, N.A., Shaikh, A.: A smart amalgamation of spectral neural algorithm for nonlinear Lane-Emden equations with simulated annealing. J. Artif. Intell. Soft Comput. Res. 7(3), 215–224 (2017)

    Article  Google Scholar 

  24. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)

    Article  Google Scholar 

  25. Łapa, K., Cpałka, K., Hayashi, Y.: Hybrid initialization in the process of evolutionary learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 380–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_34

    Chapter  Google Scholar 

  26. Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems. J. Glob. Optim. 37(3), 405–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maresky, J., Davidor, Y., Gitler, D., Aharoni, G.: Selectively destructive re-start. In: Eschelman L.J. (ed.) Proceedings of the 6th International Conference on Generic Algorithms, pp. 144–150. Morgan Kaufmann (1995)

    Google Scholar 

  28. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  29. Notomista, G., Botsch, M.: A machine learning approach for the segmentation of driving maneuvers and its application in autonomous parking. J. Artif. Intelli. Soft Comput. Res. 7(4), 243–255 (2017)

    Article  Google Scholar 

  30. Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Intelligent Technologies-Theory and Applications, pp. 124–129 (2002)

    Google Scholar 

  31. Orue, A.B., Montoya, F., Encinas, L.H.: Trifork, a new pseudorandom number generator based on lagged fibonacci maps. J. Comput. Sci. Eng. 1(10), 46–51 (2010)

    Google Scholar 

  32. Pan, W., Li, K., Wang, M., Wang, J., Jiang, B.: Adaptive randomness: a new population initialization method. Math. Probl. Eng. 2014, 1–14 (2014)

    Google Scholar 

  33. Peng, L., Wang, Y., Dai, G., Cao, Z.: A novel differential evolution with uniform design for continuous global optimization. J. Comput. 7(1), 3–10 (2012)

    Article  Google Scholar 

  34. Przybył, A., Łapa, K., Szczypta, J., Wang, L.: The method of the evolutionary designing the elastic controller structure. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 476–492. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_41

    Chapter  Google Scholar 

  35. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Comput. Math. Appl. 53(10), 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rahnamayan, S., Wang, G.G.: Toward effective initialization for large-scale search spaces. WSEAS Trans. Syst. 3(8), 355–367 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)

    Article  Google Scholar 

  38. Robert, C.P.: Monte Carlo Methods. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  39. Rotar, C., Iantovics, L.B.: Directed evolution-a new metaheuristic for optimization. J. Artif. Intelli. Soft Comput. Res. 7(3), 183–200 (2017)

    Article  Google Scholar 

  40. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Sig. Process. 182, 129–137 (1989)

    Article  Google Scholar 

  41. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  Google Scholar 

  42. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1

    Book  MATH  Google Scholar 

  43. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  44. Saka, Y., Gunzburger, M., Burkardt, J.: Latinized, improved LHS, and CVT point sets in hypercubes. Int. J. Numer. Anal. Model. 4(3–4), 729–743 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Scherer, R.: Multiple Fuzzy Classification Systems. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30604-4

    Book  MATH  Google Scholar 

  46. Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factor. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 563–569. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-7908-1902-1_86

    Chapter  Google Scholar 

  47. Scherer, R., Rutkowski, L.: Neuro-fuzzy relational classifiers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 376–380. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_54

    Chapter  Google Scholar 

  48. Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Halgamuge, S.K., Wang, L. (eds.) Computational Intelligence for Modelling and Prediction, pp. 35–47. Springer, Heidelberg (2005). https://doi.org/10.1007/10966518_3

    Chapter  Google Scholar 

  49. Shinzato, T.: Box Muller Method (2007)

    Google Scholar 

  50. Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7(2), 87–101 (2017)

    Article  Google Scholar 

  51. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 137–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_12

    Chapter  Google Scholar 

  52. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_13

    Chapter  Google Scholar 

  53. Zalasiński, M., Cpałka, K., Hayashi, Y.: A method for genetic selection of the most characteristic descriptors of the dynamic signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 747–760. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_67

    Chapter  Google Scholar 

  54. Zalasiński, M., Cpałka, K., Er, M.J.: Stability evaluation of the dynamic signature partitions over time. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 733–746. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_66

    Chapter  Google Scholar 

  55. Zalasiński, M., Łapa, K., Cpałka, K., Saito, T.: A method for changes prediction of the dynamic signature global features over time. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 761–772. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_68

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łapa, K., Cpałka, K., Przybył, A., Grzanek, K. (2018). Negative Space-Based Population Initialization Algorithm (NSPIA). In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics