Skip to main content

Nanotechnology and Their Applications in Insect’s Pest Control

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology is defined as a study and application of extremely small things. It can be used in all of the other science fields, such as agriculture, chemistry, biology, physics, materials science, and engineering. Another definition of nanotechnology is an art and science of manipulating matter at nanoscales. Agriculture is the main source of many industries, so nanotechnology became an imperative approach in this field. The main approach of nanotechnology in agriculture is syntheses of nanofertilizers and nanoinsecticides. This study is concerned in nanoinsecticides. The benefits of nanoinsecticides intended for reduction of the insecticides quantity per hectare, costs, and the toxicity in soil and groundwater and increase in the quality of treatments, and enhancement of properties such as efficacy, specificity, and increase of the yield. There are four types of nanoinsecticides: nanoemulsion, nanosuspension, nanocapsules, and nanoparticles. The main objective of these formulations is the delivery and slow release of insecticides to be more potent compared with conventional formulations. So, it can be said that nanotechnology would provide safety and efficient alternatives for the management of insect pests in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release 128:185–199

    Article  CAS  PubMed  Google Scholar 

  • Araj SA, Salem NM, Ghabeish IH, Awwad AM (2015) Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater 5:1–9

    Article  CAS  Google Scholar 

  • Babu MY, Devi VJ, Ramakritinan CM, Umarani R, Taredahalli N, Kumaraguru AK (2014) Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr Nanosci 10(3):374–381

    Article  CAS  Google Scholar 

  • Bae DR, Han WS, Lim JM (2010) Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins. Langmuir 26(3):2181–2185

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica—from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manage 256:2166–2174

    Article  Google Scholar 

  • Bhan S, Mohan L, Srivastava CN (2015a) Photosensitization of nanoencapsulated temephos and Cuscuta reflexa combination on mosquito larvae. Int J Pharm Res Biosci 4(1):94–110

    CAS  Google Scholar 

  • Bhan S, Mohan L, Srivastava CN (2015b) Combinatorial studies on thermosensitization of nanoencapsulated temephos and Cuscuta reflexa. Int J Pharm Res Biosci 4(1):20–35

    Google Scholar 

  • Bhattacharyya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8(1):63–70

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: Emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Brooker M, Kleinig D (1990) Field guide to the Eucalyptus, vol 1, Revised edn. Inkata Press, Melbourne and Sydney

    Google Scholar 

  • Chaudhuri RG, Paria S (2010) Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J Colloid Interface Sci 343:439–446

    Article  CAS  PubMed  Google Scholar 

  • Chu BS, Ichikawa S, Kanafusa S, Nakajima M (2007) Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. J Am Oil Chem Soc 84(11):1053–1062

    Article  CAS  Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19:99–134

    Article  CAS  PubMed  Google Scholar 

  • Debnath N, Das S, Patra P, Mitra S, Goswami A (2012) Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol Environ Chem 94(5):944–951

    Article  CAS  Google Scholar 

  • Dubey R (2006) Pure drug nanosuspensions – impact of nanosuspension technology on drug discovery and development. Drug Del Tech 6:65–71

    CAS  Google Scholar 

  • El-Aasser MS, Lack CD, Vanderhoff JW, Fowkes FM (1986) Miniemulsification process-different form of spontaneous emulsification. Colloids Surf 29:103–118

    Article  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Tech 6(3):628–647

    Article  CAS  Google Scholar 

  • Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JCT, Tietbohl LAC, Rocha L, Falcão DQ (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnology 12(1):22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S, Bergna HE, Roberts WO, Welsh WA, Libanati C, Ettlinger M, Kerner D, Maier M, Meon W, Schmoll R, Gies H, Schiffmann D (2008) Silica in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole. Nanomedicine 5(4):282–286

    Google Scholar 

  • Gao Y, Ding X, Zheng Z, Cheng X, Peng Y (2007) Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem Commun:3720–3722

    Google Scholar 

  • Giongo AMM, Vendramim JD, Forim MR (2016) Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Ciência Agrotec 40(1):26–36

    Article  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Grau MJ, Kayser O, Muller RH (2000) Nanosuspensions of poorly soluble drugs – reproducibility of small scale production. Int J Pharm 196:155–157

    Article  CAS  PubMed  Google Scholar 

  • Gribbin J, Gribbin M (1997) Richard Feynman: a life in science. Dutton, London, p 170 ISBN 0-452-27631-4

    Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Hernandez-Leon SG, Sarabia-Sainz JA, Montfort GRC, Guzman-Partida AM, Robles-Burgueño MR, Vazquez-Moreno L (2017) Novel synthesis of core-shell silica nanoparticles for the capture of low molecular weight proteins and peptides. Molecules 22(10):1–12

    Article  CAS  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase–theory, experiment, and use. Angew Chem Int Ed Engl 40(23):4330–4361

    Article  CAS  PubMed  Google Scholar 

  • Hunt JW, Dean AP, Webster RE, Johnson GN, Ennos AR (2008) A novel mechanism by which silica defends grasses against herbivory. Ann Bot 102:653–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ, Azemar N, Solans C (2004) Phase behavior and nanoemulsion formation by the phase inversion temperature method. Langmuir 20(16):6594–6598

    Article  CAS  PubMed  Google Scholar 

  • Jafari SM, He YH, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9(3):475–485

    Article  CAS  Google Scholar 

  • Jafari M, He Y, Bhandari B (2007) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225(5–6):733–741

    Article  CAS  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2):123–127

    Article  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Kalvakuntla S, Deshpande M, Attari Z, Kunnatur K (2016) Preparation and characterization of nanosuspension of aprepitant by H96 process. Adv Pharm Bull 6(1):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CK, Cho YJ, Gao ZG (2001) Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J Control Release 70:149–155

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi TJ (2008) All solid-state battery with sulfur electrode and thio-LISICON electrolyte. Power Sources 182:621

    Article  CAS  Google Scholar 

  • Laing MD, Gatarayiha MC, Adandonon A (2006) Silicon use for pest control in agriculture: a review. Proc S Afr Sug Technol Ass 80:278–286

    Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    Article  CAS  PubMed  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. Part 1: absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97

    Article  CAS  Google Scholar 

  • Lovingood DD, Owens JR, Seeber M, Kornev KG, Luzinov I (2012) Controlled microwave-assisted growth of silica nanoparticles under acid catalysis. ACS Appl Mater Interfaces 4:6875–6883

    Article  CAS  PubMed  Google Scholar 

  • McClements DJ (2004) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • McClements DJ (2005) Food emulsions: principles, practice, and techniques. CRC Press, Boca Raton, FL

    Google Scholar 

  • McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316

    Article  CAS  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    Article  CAS  PubMed  Google Scholar 

  • Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83

    Article  CAS  PubMed  Google Scholar 

  • Miller BS, Robinson RJ, Johnson JA, Jones ET, Ponnaiya BWX (1960) Studies on the relation between silica in wheat plants and resistance to Hessian fly attack. J Econ Ent 53:995–999

    Article  CAS  Google Scholar 

  • Mordue AJ, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39(11):903–924

    Article  CAS  Google Scholar 

  • Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais Soc Entomol Bras 29(4):615–632

    Article  CAS  Google Scholar 

  • Mun S, Decker EA, McClements DJ (2005) Influence of droplet characteristics on the formation of oil in-water emulsions stabilized by surfactant chitosan layers. Langmuir 21:6228–6234

    Article  CAS  PubMed  Google Scholar 

  • Naeini AT, Adeli M, Vossoughi M (2010) Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine. Nanomedicine 6:556–562

    Article  CAS  PubMed  Google Scholar 

  • Ober JA (2003) Materials flow of sulfur: US Geological Survey Open File Report 02-298

    Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Electron J Environ Agri Food Chem 7(50):2942–2947

    CAS  Google Scholar 

  • Pan Z, Cui B, Zeng Z, Feng L, Liu G, Cui H, Pan H (2015) Lambda-cyhalothrin nanosuspension prepared by the melt emulsification-high pressure homogenization method. J Nanomater:296–302

    Google Scholar 

  • Panagiotou T, Fisher R (2012) Improving product quality with entrapped stable emulsions: from theory to industrial application. Challenges 3:84–113

    Article  Google Scholar 

  • Park SK, Kim KD, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surf A 197(1–3):7–17

    Article  CAS  Google Scholar 

  • Pouton CW (1997) Formulation of self emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017b) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Praveen KG, Divya A (2015) Nanoemulsion based targeting in cancer therapeutics. Med Chem 5:272–284

    Google Scholar 

  • Qian L, Li T (2005) Review of reproductive toxicity of environmental chemical pollutants. J Environ Occup Med 22:167–171

    CAS  Google Scholar 

  • Ragaei M, Sabry KH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Ragaei M, Sabry KH, El-Rafei Amira M (2013) Towards using of new and safety material against tomato leafminer, Tuta absoluta (Meyrick). Arch Phytopathol Plant Prot 46(20):2450–2458

    Article  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopath. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nat Rev Drug Discov 4:381–385

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012a) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4(4):297–305

    Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012b) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil J Agri Res 72(4):590–594

    Article  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26(2):219–224

    Google Scholar 

  • Saini P, Gopal M, Kumar R, Srivastava C (2014) Development of pyridalyl nanocapsule suspension for efficient management of tomato fruit and shoot borer (Helicoverpa armigera). J Environ Sci Health B 49:344–351

    Article  CAS  Google Scholar 

  • Salazar J, Ghanem A, Muller RH, Moschwitzer JP (2012) Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 81(1):82–90

    Article  CAS  PubMed  Google Scholar 

  • Salem NM, Albanna LS, Abdeen AO, Ibrahim QI, Awwad AM (2016) Sulfur nanoparticles improves root and shoot growth of tomato. J Agric Sci 8(4):179–185

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97

    Chapter  Google Scholar 

  • Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the type of dispersion of the ternary system composed of water, cyclohexane and nonionic surfactant. J Colloid Interface Sci 26:70–74

    Article  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam BH, Roesli R (2000) Inert dusts. In: Alternatives to pesticides in stored product IPM. Kluwer Academic Publishers, Dordrecht, pp 321–380

    Chapter  Google Scholar 

  • Sugimoto T (2000) Fine particles-synthesis, characterization, and mechanism of growth, Surf Sci Ser 92. Marcel Dekker, New York

    Book  Google Scholar 

  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chnadrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y, Zheng H, He G, Yin Y (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114

    Article  CAS  PubMed  Google Scholar 

  • Talekar M, Ganta S, Amiji M, Jamieson S, Kendall J, Denny WA, Gar S (2013) Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. Int J Pharm 450(1–2):278–289

    Article  CAS  PubMed  Google Scholar 

  • Troncoso E, Aguilera JM, McClements DJ (2012) Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocoll 27:355–363

    Article  CAS  Google Scholar 

  • Vani C, Brindhaa U (2013) Silica nanoparticles as nanocides against Corcyra cephalonica (s.), the stored grain pest. Int J Pharm Bio Sci 4(3):1108–1118

    CAS  Google Scholar 

  • Veerakumar K, Govindarajan M, Hoti SL (2014) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577

    Article  PubMed  Google Scholar 

  • Wagner JG, Gerard ES, Kaiser DG (1966) The effect of the dosage form on serum levels of indoxole. Clin Pharmacol Ther 7:610–619

    Article  CAS  PubMed  Google Scholar 

  • Walstra P (1996) Emulsion stability. In: Becher P (ed) Encyclopedia of emulsion technology. Marcel Dekker, New York, pp 1–62

    Google Scholar 

  • Wilton P (2010) Nanocapsule delivers radiotherapy. University of Oxford, Oxford

    Google Scholar 

  • Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formulation and ostwald ripening stability. Langmuir 24:12758–12765

    Article  CAS  PubMed  Google Scholar 

  • Xiaomiao C, Jin Y, Yifeng Z, Wangyan N (2009) Application of mixed emulsifiers for preparation of cypermethrin nanocapsules. Spec Petrochem 2009-05

    Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid phase extraction packed with multiwalled carbon nanotubes prior to high performance liquid chromatography. Anal Bioanal Chem 385:1520–1525

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabry, Ak.H., Ragaei, M. (2018). Nanotechnology and Their Applications in Insect’s Pest Control. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-91161-8_1

Download citation

Publish with us

Policies and ethics