Skip to main content

A Fuzzy Model for Gene Expression Profiles Reducing Based on the Complex Use of Statistical Criteria and Shannon Entropy

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

The paper presents the technology of gene expression profiles reducing based on the complex use of fuzzy logic methods, statistical criteria and Shannon entropy. Simulation of the reducing process has been performed with the use of gene expression profiles of lung cancer patients. The variance and the average absolute value were changed within the defined range from the minimum to the maximum value, and Shannon entropy from the maximum to the minimum value during the simulation process. 311 gene expression profiles from 7129 were removed as non-informativity during simulation process. The structural block diagram of the step-by-step data processing in order to remove non-informativity gene expression profiles has been proposed as the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babichev, S.A., Kornelyuk, A.I., Lytvynenko, V.I., Osypenko, V.: Computational analysis of microarray gene expression profiles of lung cancer. Biopolym. Cell 32(1), 70–79 (2016). http://biopolymers.org.ua/content/32/1/070/

    Article  Google Scholar 

  2. Babichev, S., Lytvynenko, V., Korobchynskyi, M., Taif, M.: Objective clustering inductive technology of gene expression sequences features. Commun. Comput. Inf. Sci. 716, 359–372 (2016). https://doi.org/10.1007/978-3-319-58274-0_29

    Article  Google Scholar 

  3. Babichev, S., Lytvynenko, V., Skvor, J., Fiser, J.: Model of the objective clustering inductive technology of gene expression profiles based on SOTA and DBSCAN clustering algorithms. Adv. Intell. Syst. Comput. 689, 21–39 (2018). https://doi.org/10.1007/978-3-319-70581-1_2

    Article  Google Scholar 

  4. Babichev, S., Taif, M.A., Lytvynenko, V., Osypenko, V.: Criterial analysis of gene expression sequences to create the objective clustering inductive technology. In: Proceeding of the 2017 IEEE 37th International Conference on Electronics and Nanotechnology, ELNANO 2017, pp. 244–248 (2017). http://ieeexplore.ieee.org/document/7939756/

  5. Beer, D., Kardia, S.: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8(8), 816–824 (2012). http://www.nature.com/nm/journal/v8/n8/full/nm733.html

    Article  Google Scholar 

  6. Bodyanskiy, Y., Dolotov, A., Vynokurova, O.: Evolving spiking wavelet-neuro-fuzzy self-learning system. Appl. Soft Comput. J. 4(8), 252–258 (2014). https://doi.org/10.1016/j.asoc.2013.05.020

    Article  Google Scholar 

  7. Bodyanskiy, Y., Vynokurova, O., Pliss, I., Peleshko, D., Rashkevych, Y.: Hybrid generalized additive wavelet-neuro-fuzzy-system and its adaptive learning. Adv. Intell. Syst. Comput. 470, 51–61 (2016). https://doi.org/10.1007/978-3-319-39639-2_5

    Article  Google Scholar 

  8. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given in the ordinal scale. Int. J. Intell. Syst. Appl. (IJISA) 9(1), 67–74 (2017). https://doi.org/10.5815/ijisa.2017.01.07

    Article  Google Scholar 

  9. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given on the ordinal scale based on membership and likelihood functions sharing. Int. J. Intell. Syst. Appl. (IJISA) 9(2), 1–9 (2017). https://doi.org/10.5815/ijisa.2017.02.01

    Article  Google Scholar 

  10. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Possibilistic fuzzy clustering for categorical data arrays based on frequency prototypes and dissimilarity measures. Int. J. Intell. Syst. Appl. (IJISA) 9(5), 55–61 (2017). https://doi.org/10.5815/ijisa.2017.05.07

    Article  Google Scholar 

  11. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Tkachov, V.M.: Fuzzy clustering data arrays with omitted observations. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 24–32 (2017). https://doi.org/10.5815/ijisa.2017.06.03

    Article  Google Scholar 

  12. Kondratenko, Y., Korobko, O., Kozlov, O.: Synthesis and optimization of fuzzy controller for thermoacoustic plant. Stud. Fuzziness Soft Comput. 342, 453–457 (2016). https://doi.org/10.1007/978-3-319-32229-2_31

    Article  MathSciNet  Google Scholar 

  13. Yaghoobi, H., Haghipour, S., Hamzeiy, H., Asadi-Khiavi, M.: A review of modeling techniques for genetic regulatory networks. J. Med. Sig. Sens. 2(1), 61–70 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592506/

    Google Scholar 

  14. Zadeh, L.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996). http://ieeexplore.ieee.org/document/493904/

    Article  Google Scholar 

  15. Zak, D., Vadigepalli, R., Gonye, E., Doyle, F., Schwaber, J., Ogunnaike, B.: Unconventional systems analysis problem in molecular biology: a case study in gene regulatory network modeling. Comput. Chem. Eng. 29(3), 547–563 (2005). http://www.sciencedirect.com/science/article/pii/S0098135404002443

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Babichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babichev, S., Lytvynenko, V., Gozhyj, A., Korobchynskyi, M., Voronenko, M. (2019). A Fuzzy Model for Gene Expression Profiles Reducing Based on the Complex Use of Statistical Criteria and Shannon Entropy. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_55

Download citation

Publish with us

Policies and ethics