Skip to main content

Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation

  • Chapter
  • First Online:
Human and Machine Learning

Abstract

Recently, many researchers have been inspired by the success of deep learning in computer vision to improve the performance of detection systems for plant diseases. Unfortunately, most of these studies did not leverage recent deep architectures and were based essentially on AlexNet, GoogleNet or similar architectures. Moreover, the research did not take advantage of deep learning visualisation methods which qualifies these deep classifiers as black boxes as they are not transparent. In this chapter, we have tested multiple state-of-the-art Convolutional Neural Network (CNN) architectures using three learning strategies on a public dataset for plant diseases classification. These new architectures outperform the state-of-the-art results of plant diseases classification with an accuracy reaching 99.76%. Furthermore, we have proposed the use of saliency maps as a visualisation method to understand and interpret the CNN classification mechanism. This visualisation method increases the transparency of deep learning models and gives more insight into the symptoms of plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Images are randomly cropped to be 299 \(*\) 299 for Inception v3 architecture and 224 \(*\) 224 for (AlexNet, DenseNet-169, ResNet-34, SqueezeNet-1.1 and VGG13).

  2. 2.

    https://github.com/pytorch/pytorch.

References

  1. Akhtar, A., Khanum, A., Khan, S.A., Shaukat, A.: Automated plant disease analysis (APDA): performance comparison of machine learning techniques. In: 2013 11th International Conference on Frontiers of Information Technology, pp. 60–65. IEEE Computer Society, Islamabad (2013)

    Google Scholar 

  2. Al Hiary, H., Bani Ahmad, S., Reyalat, M., Braik, M., ALRahamneh, Z.: Fast and accurate detection and classification of plant diseases. Int. J. Comput. Appl. 17(1), 31–38 (2011)

    Google Scholar 

  3. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016). https://doi.org/10.1109/TMI.2016.2528120

    Article  Google Scholar 

  4. Blancard, D.: 2 - Diagnosis of Parasitic and Nonparasitic Diseases. Academic Press, The Netherlands (2012)

    Book  Google Scholar 

  5. Brahimi, M., Boukhalfa, K., Moussaoui, A.: Deep learning for tomato diseases: classification and symptoms visualization. Appl. Artif. Intell. 31(4), 1–17 (2017)

    Article  Google Scholar 

  6. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014). https://doi.org/10.1109/ACCESS.2014.2325029

    Article  Google Scholar 

  7. Dandawate, Y., Kokare, R.: An automated approach for classification of plant diseases towards development of futuristic decision support system in Indian perspective. In: 2015 International Conference on Advances in Computing. Communications and Informatics, ICACCI 2015, pp. 794–799. IEEE, Kochi, India (2015)

    Google Scholar 

  8. DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E.L., Yosinski, J., Gore, M.A., Nelson, R.J., Lipson, H.: Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology (2017). https://doi.org/10.1094/PHYTO-11-16-0417-R

  9. Fujita, E., Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi, H.: Basic investigation on a robust and practical plant diagnostic system. In: Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 989–992 (2016)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  11. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8. IEEE (2009)

    Google Scholar 

  12. Hanssen, I.M., Lapidot, M.: Major tomato viruses in the Mediterranean basin. Adv. Virus Res. 84, 31–66 (2012)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR arXiv:1512.03385 (2015)

  14. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. CoRR arXiv:1608.0 (2016)

  15. Hughes, D., Salathe, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics, pp. 1–13 (2015)

    Google Scholar 

  16. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR arXiv:1602.07360 (2016)

  17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14, pp. 675–678. ACM, New York, NY, USA (2014). https://doi.org/10.1145/2647868.2654889

  18. Kawasaki, Y., Uga, H., Kagiwada, S., Iyatomi, H.: Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. In: Advances in Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV, USA, 14–16 December 2015, Proceedings, Part II, pp. 638–645 (2015)

    Chapter  Google Scholar 

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR arXiv:1609.02907 (2016)

  20. Koike, S.T., Gladders, P., Paulus, A.O.: Vegetable Diseases: A Color Handbook. Academic Press, San Diego (2007)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  23. Lee, W., Kim, S., Lee, Y.T., Lee, H.W., Choi, M.: Deep neural networks for wild fire detection with unmanned aerial vehicle. In: 2017 IEEE International Conference on Consumer Electronics (ICCE), pp. 252–253 (2017)

    Google Scholar 

  24. Lu, Y., Yi, S., Zeng, N., Liu, Y., Zhang, Y.: Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267, 378–384 (2017)

    Article  Google Scholar 

  25. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7(September), 1–7 (2016)

    Google Scholar 

  26. Mokhtar, U., El-Bendary, N., Hassenian, A.E., Emary, E., Mahmoud, M.A., Hefny, H., Tolba, M.F., Mokhtar, U., Hassenian, A.E., Emary, E., Mahmoud, M.A.: SVM-Based detection of tomato leaves diseases. In: Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S. (eds.) Advances in Intelligent Systems and Computing, vol. 323, pp. 641–652. Springer, Cham (2015)

    Google Scholar 

  27. Nachtigall, L.G., Araujo, R.M., Nachtigall, G.R.: Classification of apple tree disorders using convolutional neural networks. In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 472–476 (2016). https://doi.org/10.1109/ICTAI.2016.0078

  28. Otálora, S., Perdomo, O., González, F., Müller, H.: Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images, pp. 146–154. Springer International Publishing, Cham (2017)

    Google Scholar 

  29. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1742–1750 (2015)

    Google Scholar 

  30. Sharma, M., Saha, O., Sriraman, A., Hebbalaguppe, R., Vig, L., Karande, S.: Crowdsourcing for chromosome segmentation and deep classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 786–793 (2017). https://doi.org/10.1109/CVPRW.2017.109

  31. Shinozaki, T.: Semi-supervised Learning for Convolutional Neural Networks Using Mild Supervisory Signals, pp. 381–388. Springer International Publishing, Cham (2016)

    Google Scholar 

  32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. CoRR arXiv:1312.6034 (2013)

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2014)

  34. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016 (2016)

    Article  Google Scholar 

  35. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: the all convolutional net. CoRR arXiv:1412.6806 (2014)

  36. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12 June, Boston, USA, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. arXiv:1512.0 (2015)

  38. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. CoRR arXiv:1701.03551 (2017)

  39. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. LNCS, vol. 8689 (PART 1), pp. 818–833 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Brahimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., Moussaoui, A. (2018). Deep Learning for Plant Diseases: Detection and Saliency Map Visualisation. In: Zhou, J., Chen, F. (eds) Human and Machine Learning. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-90403-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90403-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90402-3

  • Online ISBN: 978-3-319-90403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics