Skip to main content

Abstract

We describe an effective optimization strategy that is capable of discovering innovative cost-optimal designs of complete ascent assembly structures. Our approach relies on a continuous 2D model abstraction, an application-inspired multi-objective formulation of the optimal design task and an efficient coevolutionary solver. The obtained results provide empirical support that our novel strategy is able to deliver competitive results for the underlying general optimization challenge: the (obstacle-avoiding) Euclidean Steiner Tree Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beasley JE (1992) A heuristic for Euclidean and rectilinear Steiner problems. Eur J Oper Res 58(2):284–292

    Article  Google Scholar 

  • Bhaumik B (1994) A neural network for the Steiner minimal tree problem. Biol Cyber 70(5):485–494

    Article  Google Scholar 

  • De Jong KA (2006) Evolutionary computation: a unified approach. MIT press, Cambridge, MA

    MATH  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Frank G, Entner D, Prante T, Khachatouri V, Schwarz M (2014) Towards a generic framework of engineering design automation for creating complex CAD models. Int J Adv Syst Meas 7(1):179–192

    Google Scholar 

  • Garey MR, Graham RL, Johnson DS (1977) The complexity of computing Steiner minimal trees. SIAM J Appl Math 32(4):835–859

    Article  MathSciNet  Google Scholar 

  • Gilbert E, Pollak H (1968) Steiner minimal trees. SIAM J Appl Math 16(1):1–29

    Article  MathSciNet  Google Scholar 

  • Hellwig M, Entner D, Prante T, Zăvoianu AC, Schwarz M, Fink K (2017) Optimization of ascent assembly design based on a combinatorial problem representation. In: Proceedings of EUROGEN 2017, Madrid, Spain, September 13–15

    Google Scholar 

  • Kukkonen S, Lampinen J (2005) GDE3: The third evolution step of generalized differential evolution. In: IEEE Congress on evolutionary computation (CEC 2005). IEEE Press, New York, pp 443–450

    Google Scholar 

  • Langdon WB, Poli R (1998) Fitness causes bloat. In: Chawdhry P et al (eds) Soft computing in engineering design and manufacturing. Springer, Berlin, pp 13–22

    Chapter  Google Scholar 

  • LWN (2017) Liebherr-Werk Nenzing GmbH. http://www.liebherr.com/en-GB/35267.wfw. Accessed 06 March 2017

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Labs Tech J 36(6):1389–1401

    Article  Google Scholar 

  • Soukup J, Chow W (1973) Set of test problems for the minimum length connection networks. ACM SIGMAP Bull 15:48–51

    Article  Google Scholar 

  • Storn R, Price KV (1997) Differential evolution - a simple and effcient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Technical Report, School of CS & EE, University of Essex

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2002) SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary methods for design, optimisation and control with application to industrial problems (EUROGEN 2001), International Center for Numerical Methods in Engineering (CIMNE), pp 95–100

    Google Scholar 

  • Zăvoianu AC, Lughofer E, Amrhein W, Klement EP (2013) Efficient multi-objective optimization using 2-population cooperative coevolution. In: Computer aided systems theory - EUROCAST 2013. Springer, Berlin, pp 251–258 (Lecture Notes in Computer Science)

    Google Scholar 

  • Zăvoianu AC, Lughofer E, Bramerdorfer G, Amrhein W, Klement EP (2014) DECMO2: a robust hybrid and adaptive multi-objective evolutionary algorithm. Soft Comput 19(12):3551–3569. https://doi.org/10.1007/s00500-014-1308-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the K-Project “Advanced Engineering Design Automation” (AEDA) that is financed under the COMET funding scheme of the Austrian Research Promotion Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru-Ciprian Zăvoianu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zăvoianu, AC. et al. (2019). On the Optimization of 2D Path Network Layouts in Engineering Designs via Evolutionary Computation Techniques. In: Andrés-Pérez, E., González, L., Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds) Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems. Computational Methods in Applied Sciences, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-89890-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89890-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89889-6

  • Online ISBN: 978-3-319-89890-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics