Skip to main content

Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration

  • Chapter
  • First Online:
RNA Metabolism in Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 20))

Abstract

Senataxin (SETX) is a DNA-RNA helicase whose C-terminal region shows homology to the helicase domain of the yeast protein Sen1p. Genetic discoveries have established the importance of SETX for neural function, as recessive mutations in the SETX gene cause Ataxia with Oculomotor Apraxia type 2 (AOA2) (OMIM: 606002), which is the third most common form of recessive ataxia, after Friedreich’s ataxia and Ataxia-Telangiectasia. In addition, rare, dominant SETX mutations cause a juvenile-onset form of Amyotrophic Lateral Sclerosis (ALS), known as ALS4. SETX performs a number of RNA regulatory functions, including maintaining RNA transcriptome homeostasis. Over the last decade, altered RNA regulation and aberrant RNA-binding protein function have emerged as a central theme in motor neuron disease pathogenesis, with evidence suggesting that sporadic ALS disease pathology may overlap with the molecular pathology uncovered in familial ALS. Like other RNA processing proteins linked to ALS, the basis for SETX gain-of-function motor neuron toxicity remains ill-defined. Studies of yeast Sen1p and mammalian SETX protein have revealed a range of important RNA regulatory functions, including resolution of R-loops to permit transcription termination, and RNA splicing. Growing evidence suggests that SETX may represent an important genetic modifier locus for sporadic ALS. In cycling cells, SETX is found at nuclear foci during the S/G2 cell-cycle transition phase, and may function at sites of collision between components of the replisome and transcription machinery. While we do not yet know which SETX activities are most critical to neurodegeneration, our evolving understanding of SETX function will undoubtedly be crucial for not only understanding the role of SETX in ALS and ataxia disease pathogenesis, but also for delineating the mechanistic biology of fundamentally important molecular processes in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Ber I, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain. 2004;127:759–67.

    Article  PubMed  Google Scholar 

  2. Rabin BA, et al. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain. 1999;122:1539–50.

    Article  PubMed  Google Scholar 

  3. Cady J, et al. Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol. 2015;77:100–13.

    Article  CAS  PubMed  Google Scholar 

  4. Chen YZ, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreira MC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.

    Article  CAS  PubMed  Google Scholar 

  6. Padmanabhan K, Robles MS, Westerling T, Weitz CJ. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science. 2012;337:599–602.

    Article  CAS  PubMed  Google Scholar 

  7. Yuce O, West SC. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol. 2013;33:406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ursic D, Chinchilla K, Finkel JS, Culbertson MR. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res. 2004;32:2441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lupski JR. Charcot-Marie-tooth polyneuropathy: duplication, gene dosage, and genetic heterogeneity. Pediatr Res. 1999;45:159–65.

    Article  CAS  PubMed  Google Scholar 

  10. Warner LE, Roa BB, Lupski JR. Absence of PMP22 coding region mutations in CMT1A duplication patients: further evidence supporting gene dosage as a mechanism for Charcot-Marie-Tooth disease type 1A. Hum Mutat. 1996;8:362.

    Article  CAS  PubMed  Google Scholar 

  11. Nihei Y, Ito D, Suzuki N. Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS). J Biol Chem. 2012;287:41310–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim HD, Choe J, Seo YS. The sen1(+) gene of Schizosaccharomyces pombe, a homologue of budding yeast SEN1, encodes an RNA and DNA helicase. Biochemistry. 1999;38:14697–710.

    Article  CAS  PubMed  Google Scholar 

  13. Ghaemmaghami S, et al. Global analysis of protein expression in yeast. Nature. 2003;425:737–41.

    Article  CAS  PubMed  Google Scholar 

  14. Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD. Quantitation of the RNA polymerase II transcription machinery in yeast. J Biol Chem. 2001;276:47150–3.

    Article  CAS  PubMed  Google Scholar 

  15. Svejstrup JQ, et al. Evidence for a mediator cycle at the initiation of transcription. Proc Natl Acad Sci U S A. 1997;94:6075–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beck M, et al. The quantitative proteome of a human cell line. Mol Syst Biol. 2011;7:549.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Avemaria F, et al. Mutation in the senataxin gene found in a patient affected by familial ALS with juvenile onset and slow progression. Amyotroph Lateral Scler. 2011;12:228–30.

    Article  CAS  PubMed  Google Scholar 

  18. Rudnik-Schoneborn S, Arning L, Epplen JT, Zerres K. SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromuscul Disord. 2012;22:258–62.

    Article  PubMed  Google Scholar 

  19. Anheim M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.

    Article  CAS  Google Scholar 

  20. Suraweera A, et al. Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol. 2007;177:969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vantaggiato C, et al. Novel SETX variants in a patient with ataxia, neuropathy, and oculomotor apraxia are associated with normal sensitivity to oxidative DNA damaging agents. Brain Dev. 2014;36:682–9.

    Article  PubMed  Google Scholar 

  22. De Amicis A, et al. Role of senataxin in DNA damage and telomeric stability. DNA Repair. 2011;10:199–209.

    Article  CAS  PubMed  Google Scholar 

  23. Lynch DR, Braastad CD, Nagan N. Ovarian failure in ataxia with oculomotor apraxia type 2. Am J Med Genet A. 2007;143:1775–7.

    Article  CAS  Google Scholar 

  24. Vance C, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bennett CL, La Spada AR. Unwinding the role of senataxin in neurodegeneration. Discov Med. 2015;19:127–36.

    PubMed  Google Scholar 

  26. Weng Y, Czaplinski K, Peltz SW. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol. 1996;16:5477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Medghalchi SM, et al. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum Mol Genet. 2001;10:99–105.

    Article  CAS  PubMed  Google Scholar 

  28. Barmada SJ, et al. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proc Natl Acad Sci U S A. 2015;112:7821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grohmann K, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lefebvre S, Burglen L, Frezal J, Munnich A, Melki J. The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet. 1998;7:1531–6.

    Article  CAS  PubMed  Google Scholar 

  31. Cox GA, Mahaffey CL, Frankel WN. Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele. Neuron. 1998;21:1327–37.

    Article  CAS  PubMed  Google Scholar 

  32. Ursic D, DeMarini DJ, Culbertson MR. Inactivation of the yeast Sen1 protein affects the localization of nucleolar proteins. Mol Gen Genet. 1995;249:571–84.

    Article  CAS  PubMed  Google Scholar 

  33. Ursic D, Himmel KL, Gurley KA, Webb F, Culbertson MR. The yeast SEN1 gene is required for the processing of diverse RNA classes. Nucleic Acids Res. 1997;25:4778–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winey M, Culbertson MR. Mutations affecting the tRNA-splicing endonuclease activity of Saccharomyces cerevisiae. Genetics. 1988;118:609–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Rasmussen TP, Culbertson MR. The putative nucleic acid helicase Sen1p is required for formation and stability of termini and for maximal rates of synthesis and levels of accumulation of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18:6885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinmetz EJ, Conrad NK, Brow DA, Corden JL. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature. 2001;413:327–31.

    Article  CAS  PubMed  Google Scholar 

  37. Steinmetz EJ, Brow DA. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol. 1996;16:6993–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rondon AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell. 2009;36:88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinmetz EJ, et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell. 2006;24:735–46.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds JJ, Stewart GS. A single strand that links multiple neuropathologies in human disease. Brain. 2013;136:14–27.

    Article  PubMed  Google Scholar 

  41. Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell. 2011;42:794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjee A, Sammarco MC, Ditch S, Wang J, Grabczyk E. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells. PLoS One. 2009;4:e6193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Becherel OJ, et al. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet. 2013;9:e1003435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elson A, et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A. 1996;93:13084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeo AJ, et al. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS One. 2014;9:e90219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han Z, Libri D, Porrua O. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucleic Acids Res. 2017;45:1355–70.

    Article  CAS  PubMed  Google Scholar 

  47. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 2003;4:442–51.

    Article  CAS  PubMed  Google Scholar 

  48. Bennett CL, et al. Protein interaction analysis of senataxin and the ALS4 L389S mutant yields insights into senataxin post-translational modification and uncovers mutant-specific binding with a brain cytoplasmic RNA-encoded peptide. PLoS One. 2013;8:e78837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richard P, Feng S, Manley JL. A SUMO-dependent interaction between Senataxin and the exosome, disrupted in the neurodegenerative disease AOA2, targets the exosome to sites of transcription-induced DNA damage. Genes Dev. 2013;27:2227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suraweera A, et al. Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet. 2009;18:3384–96.

    Article  CAS  PubMed  Google Scholar 

  51. Deng HX, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993;261:1047–51.

    Article  CAS  PubMed  Google Scholar 

  52. DeMarini DJ, et al. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol Cell Biol. 1995;15:6311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carroll KL, Pradhan DA, Granek JA, Clarke ND, Corden JL. Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol. 2004;24:6241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell. 2006;21:239–48.

    Article  CAS  PubMed  Google Scholar 

  55. Kuehner JN, Pearson EL, Moore C. Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol. 2011;12:283–94.

    Article  CAS  PubMed  Google Scholar 

  56. Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev. 2009;23:1247–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen YZ, et al. Senataxin, the yeast Sen1p orthologue: characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis. 2006;23:97–108.

    Article  CAS  PubMed  Google Scholar 

  58. Roda RH, Rinaldi C, Singh R, Schindler AB, Blackstone C. Ataxia with oculomotor apraxia type 2 fibroblasts exhibit increased susceptibility to oxidative DNA damage. J Clin Neurosci. 2014;21:1627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Helmrich A, Ballarino M, Nudler E, Tora L. Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol. 2013;20:412–8.

    Article  CAS  PubMed  Google Scholar 

  60. Helmrich A, Ballarino M, Tora L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell. 2011;44:966–77.

    Article  CAS  PubMed  Google Scholar 

  61. Lukas C, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13:243–53.

    Article  CAS  PubMed  Google Scholar 

  62. de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery. Hum Mol Genet. 2009;18:2115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maddatu TP, Garvey SM, Schroeder DG, Hampton TG, Cox GA. Transgenic rescue of neurogenic atrophy in the nmd mouse reveals a role for Ighmbp2 in dilated cardiomyopathy. Hum Mol Genet. 2004;13:1105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hanada T, et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature. 2013;495:474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karaca E, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell. 2014;157:636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee JW, et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50–5.

    Article  CAS  PubMed  Google Scholar 

  67. Ishimura R, et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science. 2014;345:455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wan J, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet. 2012;44:704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Erazo A, Goff SP. Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction. Retrovirology. 2015;12:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–900.

    Article  CAS  PubMed  Google Scholar 

  71. Li DK, Tisdale S, Lotti F, Pellizzoni L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol. 2014;32:22–9.

    Article  CAS  PubMed  Google Scholar 

  72. Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science. 2015;349:650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cirulli ET, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science. 2015;347:1436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet. 2014;10:e1004704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kenna KP, et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet. 2013;50:776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our SETX research is supported by a grant from the Robert Packard Center for ALS Research at the Johns Hopkins School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert R. La Spada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennett, C.L., La Spada, A.R. (2018). Senataxin, A Novel Helicase at the Interface of RNA Transcriptome Regulation and Neurobiology: From Normal Function to Pathological Roles in Motor Neuron Disease and Cerebellar Degeneration. In: Sattler, R., Donnelly, C. (eds) RNA Metabolism in Neurodegenerative Diseases. Advances in Neurobiology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-89689-2_10

Download citation

Publish with us

Policies and ethics