Skip to main content

Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases

  • Chapter
  • First Online:
Molecular Mechanisms of Notch Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1066))

Abstract

Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ADAM10 :

A Disintegrin and Metalloprotease 10

AES:

Amino-terminal Enhancer of Split

ago :

archipelago

amx :

almondex

AOS:

Adams-Oliver Syndrome

AP-3:

Adaptor Protein-3

Aph:

Anterior pharynx defective

APOE :

APOlipoprotein E

APP:

Amyloid Precursor Protein

aPKC:

atypical Protein Kinase C

ARHGAP31 :

Rho GTPase-activating protein 31

Arp2/3:

Actin-related protein 2/3

AS-C:

Achaete-Scute Complex

BAC:

Bacterial Artificial Chromosome

bib :

big brain

BDSC:

Bloomington Drosophila Stock Center

bHLH:

basic Helix-Loop-Helix

C. elegans :

Caenorhabditis elegans

CADASIL:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy

CBP/CREBBP:

C-Adenosine Mono Phosphate Responsive Element (cAMP-RE)-Binding protein (CREB)-Binding Protein

CDK8 :

Cyclin-Dependent Kinase 8

CREB:

cAMP response element binding protein

cDNA:

complementary DeoxyriboNucleic Acid

CHARGE:

Cohorts for Heart and Aging Research in Genomic Epidemiology

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

CtBP:

C-terminal Binding Protein

DECHIPHER:

DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources

DFS:

Dominant Female Sterile

DGGR:

Drosophila Genomics and Genetic Resources

DGRC:

Drosophila Genomics Resource Center

DIOPT:

Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool

Dl :

Delta

DLL:

DeLta-Like

DOCK6 :

Dedicator Of Cytokinesis 6

DSHB:

Developmental Studies Hybridoma Bank

dx :

deltex

E(spl)-C :

Enhancer of split-Complex

EGF:

Epidermal Growth Factor

EHBP-1 :

EH (Eps15 Homology) domain Binding Protein-1

elav :

embryonic lethal abnormal vision

EMS:

Ethyl MethaneSulfonate

Eogt :

EGF-domain O-GlcNAc transferase

EP300 :

E1A binding protein P300

ER:

Endoplasmic Reticulum

ESCRT:

Endosomal Sorting Complex Required for Transport

FAD:

Familial Alzheimer’s Disease

FBXW7 :

F-BoX and WD repeat domain containing 7

FHL1 :

Four and a Half LIM domains 1

FLP:

FLiPpase

Fng :

Fringe

FRT:

Flippase Recognition Target

GAP:

GTPase-Activating Protein

GEF:

Guanine nucleotide Exchange Factor

Geno2MP:

Genotype to Mendelian Phenotype Browser

GFI1:

Growth Factor Independent 1 transcriptional repressor

glcNAc:

N-Acetylglucosamine

glp-1 :

abnormal germ line proliferation-1

GOM:

Granular Osmophilic Material

Gro :

Groucho

GWAS:

Genome-Wide Association Studies

H :

Hairless

hAPF:

hours After Puparium Formation

HCOP:

Human genome organization gene nomenclature committee Comparison of Orthology Predictions search

HDR:

Homology Directed Repair

HES:

Hairy and Enhancer of Split

HEY:

Hairy/Enhancer-of-split related with YRPW motif

HOPS:

HOmotypic fusion and Protein Sorting

IMF:

Infantile MyoFibromatosis

JAG:

JAGged

kuz :

kuzbanian

l(2)gd1 :

lethal (2) giant discs 1

LFNG :

Lunatic FriNGe

LIM :

Lin11, Isl-1 and Mec-3

lin-12 :

cell lineage defective-12

LMNS:

Lateral MeNingocele Syndrome

LNR:

Lin-12/Notch Repeat

LOAD:

Late-Onset Alzheimer’s Disease

LVNC:

Left Ventricular NonCompaction

mam :

mastermind

MAML:

MAsterMind-Like

MARRVEL:

Model organism Aggregated Resources for Rare Variant ExpLoration

MESP2 :

Mesoderm posterior bHLH transcription factor 2

MFNG :

Manic FriNGe

MGI:

Mouse Genome Informatics

mib:

mindbomb

MiMIC:

Minos-Mediated Integration Cassette

mRNA:

messenger RiboNucleic Acid

Nct/NCSTN :

Nicastrin

nej :

nejire

neur/NEURL :

neuralized

NEXT:

Notch EXtracellular Truncation

NICD:

Notch IntraCellular Domain

NRR:

Negative Regulatory Region

O-fut1 :

O-fucosyltransferase-1

OMIM:

Online Mendelian Inheritance in Man

PDGFRB :

Platelet Derived Growth Factor Receptor Beta

pen/PSENEN :

presenilin enhancer

PEST:

proline (P), glutamic acid (E), serine (S) and threonine (T)-rich

POFUT1 :

Protein O-fucosyltransferase 1

POGLUT1 :

Protein O-glucosyltransferase 1

PTM:

Post-Translational Modification

Psn/PSEN :

Presenilin

RBPJ :

Recombination signal Binding Protein for immunoglobulin kappa J region

RFNG :

Radical FriNGe

RIPPLY2 :

RIPPLY transcriptional repressor 2

RMCE:

Recombinase Mediated Cassette Exchange

RNAi:

RNA interference

SA:

Splice Acceptor

SCDO:

SpondyloCostal DysOstosis

Sec15 :

Secretory 15

Ser :

Serrate

SGD:

Saccharomyces Genome Database

SHARP:

SMRT/HDAC1 Associated Repressor Protein

shi :

shibire

SOP:

Sensory Organ Precursor

spdo :

sanpodo

SPEN :

SPlit ENds family transcriptional repressor

spl :

split

Su(dx) :

Suppressor of deltex

Su(H) :

Suppressor of Hairless

TBX6 :

T-BoX 6

Temp :

Tempura

TLE:

Transducin Like Enhancer protein

TM2D3 :

TM2 Domain containing 3

UAS:

Upstream Activation Sequence

V-ATPase:

Vacuolar-Adenosine TriPhos-phatase

VDRC:

Vienna Drosophila Resource Center

VUS:

Variant of Unknown Significance

WASp:

Wiskott-Aldrich Syndrome protein

wg :

wingless

ZFIN:

ZebraFish Information Network

References

  • Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acar M, Jafar-Nejad H, Giagtzoglou N, Yallampalli S, David G, He Y, Delidakis C, Bellen HJ (2006) Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development 133(10):1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ (2008) Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132(2):247–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adam JC, Montell DJ (2004) A role for extra macrochaetae downstream of Notch in follicle cell differentiation. Development 131(23):5971–5980

    Article  PubMed  CAS  Google Scholar 

  • Adams FH, Oliver CP (1945) Hereditary deformities in man due to arrested development. J Hered 36:3–7

    Article  Google Scholar 

  • Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem 267(30):21879–21885

    PubMed  CAS  Google Scholar 

  • Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110(2):195–200

    Article  PubMed  CAS  Google Scholar 

  • Alexandre C, Baena-Lopez A, Vincent JP (2014) Patterning and growth control by membrane-tethered wingless. Nature 505(7482):180–185

    Article  PubMed  CAS  Google Scholar 

  • Altenhoff AM, Dessimoz C (2012) Inferring orthology and paralogy. Methods Mol Biol 855:259–279

    Article  PubMed  CAS  Google Scholar 

  • Alzforum (2017) http://www.alzforum.org/mutations

    Google Scholar 

  • Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodriguez-Falcon M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A 108(21):E128–E135

    Article  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas S, Muskavitch MA (2010) Notch: the past, the present, and the future. Curr Top Dev Biol 92:1–29

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268(5208):225–232

    Article  PubMed  CAS  Google Scholar 

  • Ayata C (2010) CADASIL: experimental insights from animal models. Stroke 41(10 Suppl):S129–S134

    Article  PubMed  PubMed Central  Google Scholar 

  • Babaoglan AB, Housden BE, Furriols M, Bray SJ (2013) Deadpan contributes to the robustness of the notch response. PLoS One 8(9):e75632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachmann A, Knust E (1998a) Dissection of cis-regulatory elements of the Drosophila gene Serrate. Dev Genes Evol 208(6):346–351

    Article  PubMed  CAS  Google Scholar 

  • Bachmann A, Knust E (1998b) Positive and negative control of Serrate expression during early development of the Drosophila wing. Mech Dev 76(1–2):67–78

    Article  PubMed  CAS  Google Scholar 

  • Bailey AM, Posakony JW (1995) Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev 9(21):2609–2622

    Article  CAS  PubMed  Google Scholar 

  • Bang AG, Posakony JW (1992) The Drosophila gene Hairless encodes a novel basic protein that controls alternative cell fates in adult sensory organ development. Genes Dev 6(9):1752–1769

    Article  PubMed  CAS  Google Scholar 

  • Barad O, Hornstein E, Barkai N (2011) Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr Opin Cell Biol 23(6):663–667

    Article  PubMed  CAS  Google Scholar 

  • Barolo S, Walker RG, Polyanovsky AD, Freschi G, Keil T, Posakony JW (2000) A notch-independent activity of suppressor of hairless is required for normal mechanoreceptor physiology. Cell 103(6):957–969

    Article  PubMed  CAS  Google Scholar 

  • Barolo S, Stone T, Bang AG, Posakony JW (2002) Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless. Genes Dev 16(15):1964–1976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baron M (2012) Endocytic routes to Notch activation. Semin Cell Dev Biol 23(4):437–442

    Article  PubMed  CAS  Google Scholar 

  • Basmanav FB, Oprisoreanu AM, Pasternack SM, Thiele H, Fritz G, Wenzel J, Grosser L, Wehner M, Wolf S, Fagerberg C, Bygum A, Altmuller J, Rutten A, Parmentier L, El Shabrawi-Caelen L, Hafner C, Nurnberg P, Kruse R, Schoch S, Hanneken S, Betz RC (2014) Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet 94(1):135–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellen HJ, Yamamoto S (2015) Morgan's legacy: fruit flies and the functional annotation of conserved genes. Cell 163(1):12–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bender LB, Kooh PJ, Muskavitch MA (1993) Complex function and expression of Delta during Drosophila oogenesis. Genetics 133(4):967–978

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Yaacov S, Le Borgne R, Abramson I, Schweisguth F, Schejter ED (2001) Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J Cell Biol 152(1):1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berdnik D, Torok T, Gonzalez-Gaitan M, Knoblich JA (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M, Ebke M, Yuan Y, Bruck W, Mugler M, Schwendemann G (1996) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL): a morphological study of a German family. Acta Neuropathol 92(4):341–350

    Article  PubMed  CAS  Google Scholar 

  • Bernard F, Krejci A, Housden B, Adryan B, Bray SJ (2010) Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137(16):2633–2642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berns N, Woichansky I, Friedrichsen S, Kraft N, Riechmann V (2014) A genome-scale in vivo RNAi analysis of epithelial development in Drosophila identifies new proliferation domains outside of the stem cell niche. J Cell Sci 127(Pt 12):2736–2748

    Article  PubMed  CAS  Google Scholar 

  • Bi P, Kuang S (2015) Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 26(5):248–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. Annu Rev Cell Dev Biol 23:293–319

    Article  PubMed  CAS  Google Scholar 

  • Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90(2):281–291

    Article  PubMed  CAS  Google Scholar 

  • Blochlinger K, Bodmer R, Jack J, Jan LY, Jan YN (1988) Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 333(6174):629–635

    Article  PubMed  CAS  Google Scholar 

  • Bloomington Drosophila Stock Center (2017) http://flystocks.bio.indiana.edu/

  • Borggrefe T, Oswald F (2014) Keeping notch target genes off: a CSL corepressor caught in the act. Structure 22(1):3–5

    Article  PubMed  CAS  Google Scholar 

  • Borggrefe T, Oswald F (2016) Setting the stage for notch: the Drosophila Su(H)-Hairless repressor complex. PLoS Biol 14(7):e1002524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulianne GL, de la Concha A, Campos-Ortega JA, Jan LY, Jan YN (1991) The Drosophila neurogenic gene neuralized encodes a novel protein and is expressed in precursors of larval and adult neurons. EMBO J 10(10):2975–2983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourgouin C, Lundgren SE, Thomas JB (1992) Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron 9(3):549–561

    Article  PubMed  CAS  Google Scholar 

  • Boyer-Di Ponio J, Wright-Crosnier C, Groyer-Picard MT, Driancourt C, Beau I, Hadchouel M, Meunier-Rotival M (2007) Biological function of mutant forms of JAGGED1 proteins in Alagille syndrome: inhibitory effect on Notch signaling. Hum Mol Genet 16(22):2683–2692

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    PubMed  CAS  Google Scholar 

  • Bray S (1998) Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol 9(6):591–597

    Article  PubMed  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

  • Bray S, Bernard F (2010) Notch targets and their regulation. Curr Top Dev Biol 92:253–275

    Article  PubMed  CAS  Google Scholar 

  • Bray S, Musisi H, Bienz M (2005) Bre1 is required for Notch signaling and histone modification. Dev Cell 8(2):279–286

    Article  PubMed  CAS  Google Scholar 

  • Bruckner K, Perez L, Clausen H, Cohen S (2000) Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406(6794):411–415

    Article  PubMed  CAS  Google Scholar 

  • Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C, Lander ES, Krumlauf R, Hattersley AT, Ellard S, Turnpenny PD (2000) Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24(4):438–441

    Article  PubMed  CAS  Google Scholar 

  • Busseau I, Diederich RJ, Xu T, Artavanis-Tsakonas S (1994) A member of the Notch group of interacting loci, deltex encodes a cytoplasmic basic protein. Genetics 136(2):585–596

    PubMed  PubMed Central  CAS  Google Scholar 

  • Campuzano S, Modolell J (1992) Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet 8(6):202–208

    Article  PubMed  CAS  Google Scholar 

  • de Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124(17):3241–3251

    PubMed  Google Scholar 

  • de Celis JF, de Celis J, Ligoxygakis P, Preiss A, Delidakis C, Bray S (1996a) Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development 122(9):2719–2728

    PubMed  Google Scholar 

  • de Celis JF, Garcia-Bellido A, Bray SJ (1996b) Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122(1):359–369

    PubMed  Google Scholar 

  • Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653

    Article  PubMed  Google Scholar 

  • Chao HT, Davids M, Burke E, Pappas JG, Rosenfeld JA, McCarty AJ, Davis T, Wolfe L, Toro C, Tifft C, Xia F, Stong N, Johnson TK, Warr CG, Yamamoto S, Adams DR, Markello TC, Gahl WA, Bellen HJ, Wangler MF, Malicdan MC (2017) A syndromic neurodevelopmental disorder caused by de novo variants in EBF3. Am J Hum Genet 100(1):128–137

    Article  PubMed  CAS  Google Scholar 

  • Charng WL, Yamamoto S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Gibbs S, Lu HC, Chen K, Giagtzoglou N, Bellen HJ (2014) Drosophila Tempura, a novel protein prenyltransferase alpha subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol 12(1):e1001777

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen BE, Kondo M, Garnier A, Watson FL, Puettmann-Holgado R, Lamar DR, Schmucker D (2006) The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125(3):607–620

    Article  PubMed  CAS  Google Scholar 

  • Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, Harrell TM, McMillin MJ, Wiszniewski W, Gambin T, Coban Akdemir ZH, Doheny K, Scott AF, Avramopoulos D, Chakravarti A, Hoover-Fong J, Mathews D, Witmer PD, Ling H, Hetrick K, Watkins L, Patterson KE, Reinier F, Blue E, Muzny D, Kircher M, Bilguvar K, Lopez-Giraldez F, Sutton VR, Tabor HK, Leal SM, Gunel M, Mane S, Gibbs RA, Boerwinkle E, Hamosh A, Shendure J, Lupski JR, Lifton RP, Valle D, Nickerson DA, Bamshad MJ (2015) The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 97(2):199–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chou TB, Perrimon N (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131(3):643–653

    PubMed  PubMed Central  CAS  Google Scholar 

  • ClinVar (2017) https://www.ncbi.nlm.nih.gov/clinvar/

    Google Scholar 

  • Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (2017) http://www.chargeconsortium.com/

  • Collins KJ, Yuan Z, Kovall RA (2014) Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22(1):70–81

    Article  PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261(5123):921–923

    Article  PubMed  CAS  Google Scholar 

  • Cornell M, Evans DA, Mann R, Fostier M, Flasza M, Monthatong M, Artavanis-Tsakonas S, Baron M (1999) The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase. Genetics 152(2):567–576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F (2017) Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356(6337):501

    Article  CAS  Google Scholar 

  • Couturier L, Schweisguth F (2014) Antibody uptake assay and in vivo imaging to study intracellular trafficking of Notch and Delta in Drosophila. Methods Mol Biol 1187:79–86

    Article  PubMed  CAS  Google Scholar 

  • Cuyvers E, Sleegers K (2016) Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol 15(8):857–868

    Article  PubMed  CAS  Google Scholar 

  • Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M (2013) Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol 11(5):e1001554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Amato G, Luxan G, de la Pompa JL (2016) Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J 283(23):4223–4237

    Article  PubMed  CAS  Google Scholar 

  • Daniels RW, Rossano AJ, Macleod GT, Ganetzky B (2014) Expression of multiple transgenes from a single construct using viral 2A peptides in Drosophila. PLoS One 9(6):e100637

    Article  PubMed  PubMed Central  Google Scholar 

  • Database of Genomic Variants (2017) http://dgv.tcag.ca/dgv/app/home/

  • DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (2017) https://decipher.sanger.ac.uk/

  • David-Morrison G, Xu Z, Rui YN, Charng WL, Jaiswal M, Yamamoto S, Xiong B, Zhang K, Sandoval H, Duraine L, Zuo Z, Zhang S, Bellen HJ (2016) WAC regulates mTOR activity by acting as an adaptor for the TTT and Pontin/Reptin complexes. Dev Cell 36(2):139–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delidakis C, Artavanis-Tsakonas S (1992) The Enhancer of split [E(spl)] locus of Drosophila encodes seven independent helix-loop-helix proteins. Proc Natl Acad Sci U S A 89(18):8731–8735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delidakis C, Preiss A, Hartley DA, Artavanis-Tsakonas S (1991) Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics 129(3):803–823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Delidakis C, Monastirioti M, Magadi SS (2014) E(spl): genetic, developmental, and evolutionary aspects of a group of invertebrate Hes proteins with close ties to Notch signaling. Curr Top Dev Biol 110:217–262

    Article  PubMed  CAS  Google Scholar 

  • Dell’Angelica EC (2009) AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21(4):552–559

    Article  PubMed  CAS  Google Scholar 

  • Developmental Studies Hybridoma Bank (2017) http://dshb.biology.uiowa.edu/

  • Dexter JS (1914) The analysis of a case of continuous variation in Drosophila by a study of its linkage relations. Am Nat 48:712–758

    Article  Google Scholar 

  • Diao F, White BH (2012) A novel approach for directing transgene expression in Drosophila: T2A-Gal4 in-frame fusion. Genetics 190(3):1139–1144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diao F, Ironfield H, Luan H, Diao F, Shropshire WC, Ewer J, Marr E, Potter CJ, Landgraf M, White BH (2015) Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 10(8):1410–1421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dichgans M, Ludwig H, Muller-Hocker J, Messerschmidt A, Gasser T (2000) Small in-frame deletions and missense mutations in CADASIL: 3D models predict misfolding of Notch3 EGF-like repeat domains. Eur J Hum Genet 8(4):280–285

    Article  PubMed  CAS  Google Scholar 

  • Digilio MC, Luca AD, Lepri F, Guida V, Ferese R, Dentici ML, Angioni A, Marino B, Dallapiccola B (2013) JAG1 mutation in a patient with deletion 22q11.2 syndrome and tetralogy of Fallot. Am J Med Genet A 161A(12):3133–3136

    Article  PubMed  CAS  Google Scholar 

  • Djiane A, Krejci A, Bernard F, Fexova S, Millen K, Bray SJ (2013) Dissecting the mechanisms of Notch induced hyperplasia. EMBO J 32(1):60–71

    Article  PubMed  CAS  Google Scholar 

  • Doherty D, Feger G, Younger-Shepherd S, Jan LY, Jan YN (1996) Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev 10(4):421–434

    Article  PubMed  CAS  Google Scholar 

  • Domanitskaya E, Schupbach T (2012) CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster. J Cell Sci 125(Pt 2):399–410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donahue CP, Kosik KS (2004) Distribution pattern of Notch3 mutations suggests a gain-of-function mechanism for CADASIL. Genomics 83(1):59–65

    Article  PubMed  CAS  Google Scholar 

  • Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199(3):481–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drosophila Genomics and Genetic Resources (2017) http://www.dgrc.kit.ac.jp/

  • Drosophila Genomics Resource Center (2017) https://dgrc.bio.indiana.edu/

  • Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (2017) http://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl

  • D'Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, Knoblich JA (2005) Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell 122(5):763–773

    Article  PubMed  CAS  Google Scholar 

  • Eun SH, Lea K, Overstreet E, Stevens S, Lee JH, Fischer JA (2007) Identification of genes that interact with Drosophila liquid facets. Genetics 175(3):1163–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Exome Aggregation Consortium Browser (2017) http://exac.broadinstitute.org/

  • Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE, Fuchs E (2011) A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145(7):1129–1141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fehon RG, Johansen K, Rebay I, Artavanis-Tsakonas S (1991) Complex cellular and subcellular regulation of notch expression during embryonic and imaginal development of Drosophila: implications for notch function. J Cell Biol 113(3):657–669

    Article  PubMed  CAS  Google Scholar 

  • Fleming RJ, Scottgale TN, Diederich RJ, Artavanis-Tsakonas S (1990) The gene Serrate encodes a putative EGF-like transmembrane protein essential for proper ectodermal development in Drosophila melanogaster. Genes Dev 4(12A):2188–2201

    Article  PubMed  CAS  Google Scholar 

  • Fleming RJ, Gu Y, Hukriede NA (1997) Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124(15):2973–2981

    PubMed  CAS  Google Scholar 

  • Flood DG, Reaume AG, Dorfman KS, Lin YG, Lang DM, Trusko SP, Savage MJ, Annaert WG, De Strooper B, Siman R, Scott RW (2002) FAD mutant PS-1 gene-targeted mice: increased A beta 42 and A beta deposition without APP overproduction. Neurobiol Aging 23(3):335–348

    Article  PubMed  CAS  Google Scholar 

  • FlyBase (2017) http://flybase.org/

  • FlyBase-AP3 (2017) http://flybase.org/reports/FBgg0000158.html

    Google Scholar 

  • Flybase-AP3 (2017) http://flybase.org/reports/FBgg0000136.html

  • FlyBase-ESCRT (2017) http://flybase.org/reports/FBgg0000215.html

    Google Scholar 

  • Flybase-HOPS (2017) http://flybase.org/reports/FBgg0000106.html

  • Flybase-VATPase (2017) http://flybase.org/reports/FBgg0000111.html

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16(5):633–647

    Article  PubMed  CAS  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79(2):273–282

    Article  PubMed  CAS  Google Scholar 

  • Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, Parks AL, Xu W, Li J, Gurney M, Myers RL, Himes CS, Hiebsch R, Ruble C, Nye JS, Curtis D (2002) aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell 3(1):85–97

    Article  PubMed  CAS  Google Scholar 

  • Furman DP, Bukharina TA (2008) How Drosophila melanogaster forms its mechanoreceptors. Curr Genomics 9(5):312–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furukawa T, Kawaichi M, Matsunami N, Ryo H, Nishida Y, Honjo T (1991) The Drosophila RBP-J kappa gene encodes the binding protein for the immunoglobulin J kappa recombination signal sequence. J Biol Chem 266(34):23334–23340

    PubMed  CAS  Google Scholar 

  • Furukawa T, Maruyama S, Kawaichi M, Honjo T (1992) The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell 69(7):1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Fuwa TJ, Hori K, Sasamura T, Higgs J, Baron M, Matsuno K (2006) The first deltex null mutant indicates tissue-specific deltex-dependent Notch signaling in Drosophila. Mol Gen Genomics 275(3):251–263

    Article  CAS  Google Scholar 

  • Gallagher CM, Knoblich JA (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell 11(5):641–653

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Bellido A, Santamaria P (1978) Developmental analysis of the achaete-scute system of Drosophila melanogaster. Genetics 88(3):469–486

    PubMed  PubMed Central  CAS  Google Scholar 

  • Garg V (2006) Molecular genetics of aortic valve disease. Curr Opin Cardiol 21(3):180–184

    Article  PubMed  Google Scholar 

  • Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274

    Article  PubMed  CAS  Google Scholar 

  • Geisler F, Strazzabosco M (2015) Emerging roles of Notch signaling in liver disease. Hepatology 61(1):382–392

    Article  PubMed  CAS  Google Scholar 

  • Geno2MP (2017) Genotype to Mendelian phenotype browser. http://geno2mp.gs.washington.edu/Geno2MP/

  • Gho M, Bellaiche Y, Schweisguth F (1999) Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126(16):3573–3584

    PubMed  CAS  Google Scholar 

  • Giagtzoglou N, Yamamoto S, Zitserman D, Graves HK, Schulze KL, Wang H, Klein H, Roegiers F, Bellen HJ (2012) dEHBP1 controls exocytosis and recycling of Delta during asymmetric divisions. J Cell Biol 196(1):65–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giagtzoglou N, Li T, Yamamoto S, Bellen HJ (2013) Drosophila EHBP1 regulates Scabrous secretion during Notch-mediated lateral inhibition. J Cell Sci 126(Pt 16):3686–3696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianni D, Li A, Tesco G, McKay KM, Moore J, Raygor K, Rota M, Gwathmey JK, Dec GW, Aretz T, Leri A, Semigran MJ, Anversa P, Macgillivray TE, Tanzi RE, del Monte F (2010) Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy. Circulation 121(10):1216–1226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianni D, Li A, Tesco G, McKay KM, Moore J, Raygor K, Rota M, Gwathmey JK, Dec GW, Aretz T, Leri A, Semigran MJ, Anversa P, Macgillivray TE, Tanzi RE, del Monte F (2011) Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy. Circulation 121(10):1216–1226

    Article  CAS  Google Scholar 

  • Gigliani F, Longo F, Gaddini L, Battaglia PA (1996) Interactions among the bHLH domains of the proteins encoded by the Enhancer of split and achaete-scute gene complexes of Drosophila. Mol Gen Genet 251(6):628–634

    PubMed  CAS  Google Scholar 

  • Gnerer JP, Venken KJ, Dierick HA (2015) Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Res 43(8):e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Go MJ, Artavanis-Tsakonas S (1998) A genetic screen for novel components of the notch signaling pathway during Drosophila bristle development. Genetics 150(1):211–220

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ (2015) Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. J Cell Biol 210(2):303–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goode S, Melnick M, Chou TB, Perrimon N (1996) The neurogenic genes egghead and brainiac define a novel signaling pathway essential for epithelial morphogenesis during Drosophila oogenesis. Development 122(12):3863–3879

    PubMed  CAS  Google Scholar 

  • Goodfellow H, Krejci A, Moshkin Y, Verrijzer CP, Karch F, Bray SJ (2007) Gene-specific targeting of the histone chaperone asf1 to mediate silencing. Dev Cell 13(4):593–600

    Article  PubMed  CAS  Google Scholar 

  • Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 14(4):295–300

    Article  CAS  PubMed  Google Scholar 

  • Gordon WR, Vardar-Ulu D, L'Heureux S, Ashworth T, Malecki MJ, Sanchez-Irizarry C, McArthur DG, Histen G, Mitchell JL, Aster JC, Blacklow SC (2009a) Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One 4(8):e6613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon WR, Roy M, Vardar-Ulu D, Garfinkel M, Mansour MR, Aster JC, Blacklow SC (2009b) Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. Blood 113(18):4381–4390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goto S, Taniguchi M, Muraoka M, Toyoda H, Sado Y, Kawakita M, Hayashi S (2001) UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat Cell Biol 3(9):816–822

    Article  PubMed  CAS  Google Scholar 

  • Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O’Connor-Giles KM (2015) CRISPR-Cas9 Genome editing in Drosophila. Curr Protoc Mol Biol 111:31 32 31–20

    Google Scholar 

  • Green RC, Goddard KA, Jarvik GP, Amendola LM, Appelbaum PS, Berg JS, Bernhardt BA, Biesecker LG, Biswas S, Blout CL, Bowling KM, Brothers KB, Burke W, Caga-Anan CF, Chinnaiyan AM, Chung WK, Clayton EW, Cooper GM, East K, Evans JP, Fullerton SM, Garraway LA, Garrett JR, Gray SW, Henderson GE, Hindorff LA, Holm IA, Lewis MH, Hutter CM, Janne PA, Joffe S, Kaufman D, Knoppers BM, Koenig BA, Krantz ID, Manolio TA, McCullough L, McEwen J, McGuire A, Muzny D, Myers RM, Nickerson DA, Ou J, Parsons DW, Petersen GM, Plon SE, Rehm HL, Roberts JS, Robinson D, Salama JS, Scollon S, Sharp RR, Shirts B, Spinner NB, Tabor HK, Tarczy-Hornoch P, Veenstra DL, Wagle N, Weck K, Wilfond BS, Wilhelmsen K, Wolf SM, Wynn J, Yu JH (2016) Clinical sequencing exploratory research consortium: accelerating evidence-based practice of genomic medicine. Am J Hum Genet 98(6):1051–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gridley T (1997) Notch signaling in vertebrate development and disease. Mol Cell Neurosci 9(2):103–108

    Article  PubMed  CAS  Google Scholar 

  • Gridley T (2003) Notch signaling and inherited disease syndromes. Hum Mol Genet 12(1):R9–R13

    Article  PubMed  CAS  Google Scholar 

  • Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gripp KW, Robbins KM, Sobreira NL, Witmer PD, Bird LM, Avela K, Makitie O, Alves D, Hogue JS, Zackai EH, Doheny KF, Stabley DL, Sol-Church K (2015) Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 167A(2):271–281

    Article  PubMed  CAS  Google Scholar 

  • Guida V, Chiappe F, Ferese R, Usala G, Maestrale G, Iannascoli C, Bellacchio E, Mingarelli R, Digilio MC, Marino B, Uda M, De Luca A, Dallapiccola B (2011) Novel and recurrent JAG1 mutations in patients with tetralogy of Fallot. Clin Genet 80(6):591–594

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17(1):27–41

    Article  PubMed  Google Scholar 

  • Guo Y, Livne-Bar I, Zhou L, Boulianne GL (1999a) Drosophila presenilin is required for neuronal differentiation and affects notch subcellular localization and signaling. J Neurosci 19(19):8435–8442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999b) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5(1):101–106

    Article  PubMed  CAS  Google Scholar 

  • Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, Vijayraghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147(3):690–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13(9):654–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guruharsha KG, Hori K, Obar RA, Artavanis-Tsakonas S (2014) Proteomic analysis of the Notch interactome. Methods Mol Biol 1187:181–192

    Article  PubMed  CAS  Google Scholar 

  • Haberman AS, Akbar MA, Ray S, Kramer H (2010) Drosophila acinus encodes a novel regulator of endocytic and autophagic trafficking. Development 137(13):2157–2166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall LE, Alexander SJ, Chang M, Woodling NS, Yedvobnick B (2004) An EP overexpression screen for genetic modifiers of Notch pathway function in Drosophila melanogaster. Genet Res 83(2):71–82

    Article  PubMed  CAS  Google Scholar 

  • Haritunians T, Chow T, De Lange RP, Nichols JT, Ghavimi D, Dorrani N, St Clair DM, Weinmaster G, Schanen C (2005) Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J Neurol Neurosurg Psychiatry 76(9):1242–1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartenstein V, Posakony JW (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107(2):389–405

    PubMed  CAS  Google Scholar 

  • Hartenstein V, Posakony JW (1990) A dual function of the Notch gene in Drosophila sensillum development. Dev Biol 142(1):13–30

    Article  PubMed  CAS  Google Scholar 

  • Hartley DA, Xu TA, Artavanis-Tsakonas S (1987) The embryonic expression of the Notch locus of Drosophila melanogaster and the implications of point mutations in the extracellular EGF-like domain of the predicted protein. EMBO J 6(11):3407–3417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartley DA, Preiss A, Artavanis-Tsakonas S (1988) A deduced gene product from the Drosophila neurogenic locus, enhancer of split, shows homology to mammalian G-protein beta subunit. Cell 55(5):785–795

    Article  PubMed  CAS  Google Scholar 

  • Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM (2012) RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet 91(2):391–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassed S, Li S, Mulvihill J, Aston C, Palmer S (2017) Adams-Oliver syndrome review of the literature: Refining the diagnostic phenotype. Am J Med Genet A 173(3):790–800

    Article  CAS  PubMed  Google Scholar 

  • HCOP (Human Genome Organization Gene Nomenclature Committee Comparison of Orthology Predictions Search) (2017) http://www.genenames.org/cgi-bin/hcop

    Google Scholar 

  • Heitzler P (2010) Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 92:457–481

    Article  CAS  PubMed  Google Scholar 

  • Heitzler P, Bourouis M, Ruel L, Carteret C, Simpson P (1996) Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122(1):161–171

    PubMed  CAS  Google Scholar 

  • Herz HM, Woodfield SE, Chen Z, Bolduc C, Bergmann A (2009) Common and distinct genetic properties of ESCRT-II components in Drosophila. PLoS One 4(1):e4165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heuss SF, Ndiaye-Lobry D, Six EM, Israel A, Logeat F (2008) The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proc Natl Acad Sci U S A 105(32):11212–11217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • HGNC-Arp2/3 (2017) http://www.genenames.org/cgi-bin/genefamilies/set/39

  • HGNC-ESCRT (2017) http://www.genenames.org/cgi-bin/genefamilies/set/1111

  • HGNC-VATPase (2017) http://www.genenames.org/cgi-bin/genefamilies/set/415

  • Hing HK, Bangalore L, Sun X, Artavanis-Tsakonas S (1999) Mutations in the heatshock cognate 70 protein (hsc4) modulate Notch signaling. Eur J Cell Biol 78(10):690–697

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S (2011) Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol 195(6):1005–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Housden BE, Fu AQ, Krejci A, Bernard F, Fischer B, Tavare S, Russell S, Bray SJ (2013) Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E(spl)/Hes genes. PLoS Genet 9(1):e1003162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Housden BE, Li J, Bray SJ (2014) Visualizing Notch signaling in vivo in Drosophila tissues. Methods Mol Biol 1187:101–113

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Chan JA, Schuurmans C (2014) Proneural bHLH genes in development and disease. Curr Top Dev Biol 110:75–127

    Article  PubMed  CAS  Google Scholar 

  • Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19(2):166–175

    Article  PubMed  CAS  Google Scholar 

  • Hutterer A, Knoblich JA (2005) Numb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep 6(9):836–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilagan MX, Kopan R (2007) SnapShot: notch signaling pathway. Cell 128(6):1246

    Article  PubMed  Google Scholar 

  • Irvine KD, Wieschaus E (1994) fringe, a Boundary-specific signaling molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 79(4):595–606

    Article  PubMed  CAS  Google Scholar 

  • Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N (2006) Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 112(3):333–339

    Article  PubMed  CAS  Google Scholar 

  • Isidor B, Lindenbaum P, Pichon O, Bezieau S, Dina C, Jacquemont S, Martin-Coignard D, Thauvin-Robinet C, Le Merrer M, Mandel JL, David A, Faivre L, Cormier-Daire V, Redon R, Le Caignec C (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43(4):306–308

    Article  PubMed  CAS  Google Scholar 

  • Jack J, DeLotto Y (1992) Effect of wing scalloping mutations on cut expression and sense organ differentiation in the Drosophila wing margin. Genetics 131(2):353–363

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jafar-Nejad H, Acar M, Nolo R, Lacin H, Pan H, Parkhurst SM, Bellen HJ (2003) Senseless acts as a binary switch during sensory organ precursor selection. Genes Dev 17(23):2966–2978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ (2005) Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 9(3):351–363

    Article  PubMed  CAS  Google Scholar 

  • Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R (2010) Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 20(8):931–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakobsdottir J, van der Lee SJ, Bis JC, Chouraki V, Li-Kroeger D, Yamamoto S, Grove ML, Naj A, Vronskaya M, Salazar JL, DeStefano AL, Brody JA, Smith AV, Amin N, Sims R, Ibrahim-Verbaas CA, Choi SH, Satizabal CL, Lopez OL, Beiser A, Ikram MA, Garcia ME, Hayward C, Varga TV, Ripatti S, Franks PW, Hallmans G, Rolandsson O, Jansson JH, Porteous DJ, Salomaa V, Eiriksdottir G, Rice KM, Bellen HJ, Levy D, Uitterlinden AG, Emilsson V, Rotter JI, Aspelund T, O’Donnell CJ, Fitzpatrick AL, Launer LJ, Hofman A, Wang LS, Williams J, Schellenberg GD, Boerwinkle E, Psaty BM, Seshadri S, Shulman JM, Gudnason V, van Duijn CM (2016) Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer’s Disease. PLoS Genet 12(10):e1006327

    Google Scholar 

  • Jan YN, Jan LY (2001) Asymmetric cell division in the Drosophila nervous system. Nat Rev Neurosci 2(11):772–779

    Article  PubMed  CAS  Google Scholar 

  • Jana SC, Bettencourt-Dias M, Durand B, Megraw TL (2016) Drosophila melanogaster as a model for basal body research. Cilia 5:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jennings B, Preiss A, Delidakis C, Bray S (1994) The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120(12):3537–3548

    PubMed  CAS  Google Scholar 

  • Jia D, Soylemez M, Calvin G, Bornmann R, Bryant J, Hanna C, Huang YC, Deng WM (2015) A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 5:12328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansen KM, Fehon RG, Artavanis-Tsakonas S (1989) The notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. J Cell Biol 109(5):2427–2440

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA (2011) HIF takes it up a notch. Sci Signal 4(181):pe33

    Article  PubMed  CAS  Google Scholar 

  • Joutel A (2011) Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays 33(1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF, Tournier-Lasserve E (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350(9090):1511–1515

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105(5):597–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, Domenga V, Cecillon M, Vahedi K, Ducros A, Cave-Riant F, Bousser MG, Tournier-Lasserve E (2001) Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet 358(9298):2049–2051

    Article  PubMed  CAS  Google Scholar 

  • Joutel A, Monet M, Domenga V, Riant F, Tournier-Lasserve E (2004) Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet 74(2):338–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kageyama R, Niwa Y, Shimojo H, Kobayashi T, Ohtsuka T (2010) Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr Top Dev Biol 92:311–331

    Article  PubMed  CAS  Google Scholar 

  • Kakuda S, Haltiwanger RS (2017) Deciphering the fringe-mediated Notch code: identification of activating and inhibiting sites allowing discrimination between ligands. Dev Cell 40(2):193–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karaca E, Yuregir OO, Bozdogan ST, Aslan H, Pehlivan D, Jhangiani SN, Akdemir ZC, Gambin T, Bayram Y, Atik MM, Erdin S, Muzny D, Gibbs RA, Lupski JR (2015) Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. Am J Med Genet A 167A(11):2795–2799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19(5):547–552

    Article  PubMed  CAS  Google Scholar 

  • Katsonis P, Koire A, Wilson SJ, Hsu TK, Lua RC, Wilkins AD, Lichtarge O (2014) Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci 23(12):1650–1666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidd S, Lieber T (2002) Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev 115(1–2):41–51

    Article  PubMed  CAS  Google Scholar 

  • Kidd S, Kelley MR, Young MW (1986) Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6(9):3094–3108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kidd S, Baylies MK, Gasic GP, Young MW (1989) Structure and distribution of the Notch protein in developing Drosophila. Genes Dev 3(8):1113–1129

    Article  PubMed  CAS  Google Scholar 

  • Kidd S, Struhl G, Lieber T (2015) Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet 11(5):e1005244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Irvine KD, Carroll SB (1995) Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82(5):795–802

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M, Oyama T, Kawashima T, Yedvobnick B, Kumar A, Matsuno K, Harigaya K (2001) A human protein with sequence similarity to Drosophila mastermind coordinates the nuclear form of notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol 21(13):4337–4346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klambt C, Knust E, Tietze K, Campos-Ortega JA (1989) Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. EMBO J 8(1):203–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klein T, Arias AM (1998) Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 125(15):2951–2962

    PubMed  CAS  Google Scholar 

  • Klein T, Couso JP, Martinez Arias A (1998) Wing development and specification of dorsal cell fates in the absence of apterous in Drosophila. Curr Biol 8(7):417–420

    Article  PubMed  CAS  Google Scholar 

  • Knust E, Schrons H, Grawe F, Campos-Ortega JA (1992) Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132(2):505–518

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi T, Kageyama R (2014) Expression dynamics and functions of Hes factors in development and diseases. Curr Top Dev Biol 110:263–283

    Article  PubMed  CAS  Google Scholar 

  • Koch U, Radtke F (2010) Notch signaling in solid tumors. Curr Top Dev Biol 92:411–455

    Article  PubMed  CAS  Google Scholar 

  • Koch U, Lehal R, Radtke F (2013) Stem cells living with a Notch. Development 140(4):689–704

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Lun Y, Johnson RL (1999) Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 260(2):459–465

    Article  PubMed  CAS  Google Scholar 

  • Kola S, Koneti NR, Golla JP, Akka J, Gundimeda SD, Mundluru HP (2011) Mutational analysis of JAG1 gene in non-syndromic tetralogy of Fallot children. Clin Chim Acta 412(23-24):2232–2236

    Article  PubMed  CAS  Google Scholar 

  • Kono M, Sugiura K, Suganuma M, Hayashi M, Takama H, Suzuki T, Matsunaga K, Tomita Y, Akiyama M (2013) Whole-exome sequencing identifies ADAM10 mutations as a cause of reticulate acropigmentation of Kitamura, a clinical entity distinct from Dowling-Degos disease. Hum Mol Genet 22(17):3524–3533

    Article  PubMed  CAS  Google Scholar 

  • Koo BK, Yoon KJ, Yoo KW, Lim HS, Song R, So JH, Kim CH, Kong YY (2005) Mind bomb-2 is an E3 ligase for Notch ligand. J Biol Chem 280(23):22335–22342

    Article  PubMed  CAS  Google Scholar 

  • Koo BK, Yoon MJ, Yoon KJ, Im SK, Kim YY, Kim CH, Suh PG, Jan YN, Kong YY (2007) An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One 2(11):e1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kooh PJ, Fehon RG, Muskavitch MA (1993) Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117(2):493–507

    PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopczynski CC, Muskavitch MA (1989) Complex spatio-temporal accumulation of alternative transcripts from the neurogenic gene Delta during Drosophila embryogenesis. Development 107(3):623–636

    PubMed  CAS  Google Scholar 

  • Kopczynski CC, Alton AK, Fechtel K, Kooh PJ, Muskavitch MA (1988) Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev 2(12b):1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Koutelou E, Sato S, Tomomori-Sato C, Florens L, Swanson SK, Washburn MP, Kokkinaki M, Conaway RC, Conaway JW, Moschonas NK (2008) Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1. J Biol Chem 283(7):3846–3853

    Article  PubMed  CAS  Google Scholar 

  • Kovall RA, Blacklow SC (2010) Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 92:31–71

    Article  PubMed  CAS  Google Scholar 

  • Krantz ID, Smith R, Colliton RP, Tinkel H, Zackai EH, Piccoli DA, Goldmuntz E, Spinner NB (1999) Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet 84(1):56–60

    Article  PubMed  CAS  Google Scholar 

  • Krejci A, Bernard F, Housden BE, Collins S, Bray SJ (2009) Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal 2(55):ra1

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, Taniguchi Y, Kurooka H, Hamada Y, Toyokuni S, Honjo T (2003) Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18(2):301–312

    Article  PubMed  CAS  Google Scholar 

  • Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G (2005) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170(6):983–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai EC, Orgogozo V (2004) A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 269(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Lai EC, Bodner R, Posakony JW (2000) The enhancer of split complex of Drosophila includes four Notch-regulated members of the bearded gene family. Development 127(16):3441–3455

    PubMed  CAS  Google Scholar 

  • Lai EC, Deblandre GA, Kintner C, Rubin GM (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1(6):783–794

    Article  PubMed  CAS  Google Scholar 

  • Lai EC, Roegiers F, Qin X, Jan YN, Rubin GM (2005) The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development 132(10):2319–2332

    Article  PubMed  CAS  Google Scholar 

  • Lake RJ, Grimm LM, Veraksa A, Banos A, Artavanis-Tsakonas S (2009) In vivo analysis of the Notch receptor S1 cleavage. PLoS One 4(8):e6728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langevin J, Le Borgne R, Rosenfeld F, Gho M, Schweisguth F, Bellaiche Y (2005) Lethal giant larvae controls the localization of notch-signaling regulators numb, neuralized, and Sanpodo in Drosophila sensory-organ precursor cells. Curr Biol 15(10):955–962

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne R, Schweisguth F (2003) Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev Cell 5(1):139–148

    Article  PubMed  Google Scholar 

  • Le Borgne R, Remaud S, Hamel S, Schweisguth F (2005) Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila. PLoS Biol 3(4):e96

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bras S, Loyer N, Le Borgne R (2011) The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 12(2):149–161

    Article  PubMed  CAS  Google Scholar 

  • Lecourtois M, Schweisguth F (1995) The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev 9(21):2598–2608

    Article  PubMed  CAS  Google Scholar 

  • Lee TV, Sethi MK, Leonardi J, Rana NA, Buettner FF, Haltiwanger RS, Bakker H, Jafar-Nejad H (2013) Negative regulation of notch signaling by xylose. PLoS Genet 9(6):e1003547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann R, Dietrich U, Jiménez F, Campos-Ortega JA (1981) Mutations of early neurogenesis in Drosophila. Wilehm Roux Arch Dev Biol (Dev Genes Evo) 190(4):226–229

    Article  Google Scholar 

  • Lehmann R, Jimenez F, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Wilehm Roux Arch Dev Biol (Dev Genes Evo) 192(2):62–74

    Article  Google Scholar 

  • Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85(1-2):173–177

    Article  PubMed  CAS  Google Scholar 

  • Leonardi J, Fernandez-Valdivia R, Li YD, Simcox AA, Jafar-Nejad H (2011) Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development 138(16):3569–3578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16(3):243–251

    Article  PubMed  CAS  Google Scholar 

  • Li D, Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Partain J, Nixon RR, Allen CN, Irwin RP, Jakobs PM, Litt M, Hershberger RE (2006) Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet 79(6):1030–1039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li M, Cheng R, Liang J, Yan H, Zhang H, Yang L, Li C, Jiao Q, Lu Z, He J, Ji J, Shen Z, Li C, Hao F, Yu H, Yao Z (2013) Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. Am J Hum Genet 92(6):895–903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Housden BE, Bray SJ (2014) Notch signaling assays in Drosophila cultured cell lines. Methods Mol Biol 1187:131–141

    Article  PubMed  CAS  Google Scholar 

  • Lieber T, Kidd S, Struhl G (2011) DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69(3):468–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsley DL, Zimm GG (1992) The Genome of Drosophila melanogaster. Academic Press, San Diego

    Google Scholar 

  • Liu J, Sato C, Cerletti M, Wagers A (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 92:367–409

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Fukunaga-Kalabis M, Li L, Herlyn M (2015) Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys 563:13–21

    Article  CAS  Google Scholar 

  • Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, Israel A (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A 95(14):8108–8112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol 23(4):473–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundkvist J, Zhu S, Hansson EM, Schweinhardt P, Miao Q, Beatus P, Dannaeus K, Karlstrom H, Johansson CB, Viitanen M, Rozell B, Spenger C, Mohammed A, Kalimo H, Lendahl U (2005) Mice carrying a R142C Notch 3 knock-in mutation do not develop a CADASIL-like phenotype. Genesis 41(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D’Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-Garcia JL, Fernandez-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibanez B, Medrano C, Garcia-Pavia P, Gimeno JR, Monserrat L, Jimenez-Borreguero LJ, de la Pompa JL (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19(2):193–201

    Article  PubMed  CAS  Google Scholar 

  • MacGrogan D, Nus M, de la Pompa JL (2010) Notch signaling in cardiac development and disease. Curr Top Dev Biol 92:333–365

    Article  PubMed  CAS  Google Scholar 

  • Mahoney MB, Parks AL, Ruddy DA, Tiong SY, Esengil H, Phan AC, Philandrinos P, Winter CG, Chatterjee R, Huppert K, Fisher WW, L'Archeveque L, Mapa FA, Woo W, Ellis MC, Curtis D (2006) Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers. Genetics 172(4):2309–2324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S (2016) The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci 60(3):325–335

    Article  PubMed  CAS  Google Scholar 

  • Maier D, Stumm G, Kuhn K, Preiss A (1992) Hairless, a Drosophila gene involved in neural development, encodes a novel, serine rich protein. Mech Dev 38(2):143–156

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, Schwartzentruber JA, Caqueret A, Patry L, Marcadier J, Fryns JP, Boycott KM, Ste-Marie LG, McKiernan FE, Marik I, Van Esch H, Michaud JL, Samuels ME (2011) Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum Mutat 32(10):1114–1117

    Article  PubMed  CAS  Google Scholar 

  • Martignetti JA, Tian L, Li D, Ramirez MC, Camacho-Vanegas O, Camacho SC, Guo Y, Zand DJ, Bernstein AM, Masur SK, Kim CE, Otieno FG, Hou C, Abdel-Magid N, Tweddale B, Metry D, Fournet JC, Papp E, McPherson EW, Zabel C, Vaksmann G, Morisot C, Keating B, Sleiman PM, Cleveland JA, Everman DB, Zackai E, Hakonarson H (2013) Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am J Hum Genet 92(6):1001–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MARRVEL (2017) http://marrvel.org/

    Google Scholar 

  • Mazaleyrat SL, Fostier M, Wilkin MB, Aslam H, Evans DA, Cornell M, Baron M (2003) Down-regulation of Notch target gene expression by Suppressor of deltex. Dev Biol 255(2):363–372

    Article  PubMed  CAS  Google Scholar 

  • McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, Cole SE (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 17(18):2886–2893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79(1):169–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMillan BJ, Zimmerman B, Egan ED, Lofgren M, Xu X, Hesser A, Blacklow SC (2017) Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations. Glycobiology 27(8):777–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Meester JA, Southgate L, Stittrich AB, Venselaar H, Beekmans SJ, den Hollander N, Bijlsma EK, Helderman-van den Enden A, Verheij JB, Glusman G, Roach JC, Lehman A, Patel MS, de Vries BB, Ruivenkamp C, Itin P, Prescott K, Clarke S, Trembath R, Zenker M, Sukalo M, Van Laer L, Loeys B, Wuyts W (2015) Heterozygous loss-of-function mutations in DLL4 cause Adams-Oliver syndrome. Am J Hum Genet 97(3):475–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micchelli CA, Rulifson EJ, Blair SS (1997) The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124(8):1485–1495

    PubMed  CAS  Google Scholar 

  • Michel M, Aliee M, Rudolf K, Bialas L, Julicher F, Dahmann C (2016) The selector gene apterous and Notch are required to locally increase mechanical cell bond tension at the Drosophila dorsoventral compartment boundary. PLoS One 11(8):e0161668

    Article  PubMed  PubMed Central  Google Scholar 

  • Michellod MA, Randsholt NB (2008) Implication of the Drosophila beta-amyloid peptide binding-like protein AMX in Notch signaling during early neurogenesis. Brain Res Bull 75(2-4):305–309

    Article  PubMed  CAS  Google Scholar 

  • Mishra AK, Sachan N, Mutsuddi M, Mukherjee A (2015) Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 339(1):51–60

    Article  PubMed  CAS  Google Scholar 

  • Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406(6794):369–375

    Article  CAS  PubMed  Google Scholar 

  • Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, Tournier-Lasserve E, Cohen-Tannoudji M, Chabriat H, Joutel A (2009) Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain 132(Pt 6):1601–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Morel V, Lecourtois M, Massiani O, Maier D, Preiss A, Schweisguth F (2001) Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila. Curr Biol 11(10):789–792

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH, Sturtevant AH, Bridges CB (1922) Year B Carnegie Inst Wash 22:283–287

    Google Scholar 

  • Morrissette JD, Colliton RP, Spinner NB (2001) Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet 10(4):405–413

    Article  CAS  PubMed  Google Scholar 

  • Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35(6):782–793

    Article  CAS  PubMed  Google Scholar 

  • Mourikis P, Lake RJ, Firnhaber CB, DeDecker BS (2010) Modifiers of notch transcriptional activity identified by genome-wide RNAi. BMC Dev Biol 10:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouse Genome Informatics (2017) http://www.informatics.jax.org/

  • Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S (2005) Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 7(12):1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Muller R, Jenny A, Stanley P (2013) The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 8(5):e62835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, Dietzl G, Dickson BJ, Knoblich JA (2009) Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458(7241):987–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagarkar-Jaiswal S, DeLuca SZ, Lee PT, Lin WW, Pan H, Zuo Z, Lv J, Spradling AC, Bellen HJ (2015a) A genetic toolkit for tagging intronic MiMIC containing genes. elife 4:e08469

    Article  PubMed Central  Google Scholar 

  • Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2015b) A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. elife 4:e05338

    Article  PubMed Central  Google Scholar 

  • Nagel AC, Krejci A, Tenin G, Bravo-Patino A, Bray S, Maier D, Preiss A (2005) Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol 25(23):10433–10441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakao K, Campos-Ortega JA (1996) Persistent expression of genes of the enhancer of split complex suppresses neural development in Drosophila. Neuron 16(2):275–286

    Article  PubMed  CAS  Google Scholar 

  • Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124(4):871–880

    PubMed  CAS  Google Scholar 

  • Nguyen HT, Voza F, Ezzeddine N, Frasch M (2007) Drosophila mind bomb2 is required for maintaining muscle integrity and survival. J Cell Biol 179(2):219–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102(3):349–362

    Article  PubMed  CAS  Google Scholar 

  • Nowell C, Radtke F (2013) Cutaneous Notch signaling in health and disease. Cold Spring Harb Perspect Med 3(12):a017772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nus M, MacGrogan D, Martinez-Poveda B, Benito Y, Casanova JC, Fernandez-Aviles F, Bermejo J, de la Pompa JL (2011) Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler Thromb Vasc Biol 31(7):1580–1588

    Article  PubMed  CAS  Google Scholar 

  • O'Connor-Giles KM, Skeath JB (2003) Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila. Dev Cell 5(2):231–243

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16(3):235–242

    Article  PubMed  CAS  Google Scholar 

  • Oellers N, Dehio M, Knust E (1994) bHLH proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol Gen Genet 244(5):465–473

    Article  PubMed  CAS  Google Scholar 

  • Okajima T, Irvine KD (2002) Regulation of notch signaling by o-linked fucose. Cell 111(6):893–904

    Article  PubMed  CAS  Google Scholar 

  • Online Mendelian Inheritance in Man (2017) https://www.omim.org/

  • Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, Bader B, Giese A, Dichgans M (2009) CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet 18(15):2761–2767

    Article  PubMed  CAS  Google Scholar 

  • Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM (2002) SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 21(20):5417–5426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer WH, Deng WM (2015) Ligand-independent mechanisms of notch activity. Trends Cell Biol 25(11):697–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panin VM, Papayannopoulos V, Wilson R, Irvine KD (1997) Fringe modulates Notch-ligand interactions. Nature 387(6636):908–912

    Article  PubMed  CAS  Google Scholar 

  • Parks AL, Muskavitch MA (1993) Delta function is required for bristle organ determination and morphogenesis in Drosophila. Dev Biol 157(2):484–496

    Article  PubMed  CAS  Google Scholar 

  • Parks AL, Turner FR, Muskavitch MA (1995) Relationships between complex Delta expression and the specification of retinal cell fates during Drosophila eye development. Mech Dev 50(2–3):201–216

    Article  PubMed  CAS  Google Scholar 

  • Paroush Z, Finley RL Jr, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79(5):805–815

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos E, Pitsouli C, Klueg KM, Muskavitch MA, Moschonas NK, Delidakis C (2001) neuralized Encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1(6):807–816

    Article  PubMed  CAS  Google Scholar 

  • Penton AL, Leonard LD, Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23(4):450–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Periz G, Fortini ME (1999) Ca(2+)-ATPase function is required for intracellular trafficking of the Notch receptor in Drosophila. EMBO J 18(21):5983–5993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perrimon N, Lanjuin A, Arnold C, Noll E (1996) Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 144(4):1681–1692

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peters N, Opherk C, Zacherle S, Capell A, Gempel P, Dichgans M (2004) CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk. Exp Cell Res 299(2):454–464

    Article  PubMed  CAS  Google Scholar 

  • Pezeron G, Millen K, Boukhatmi H, Bray S (2014) Notch directly regulates the cell morphogenesis genes Reck, talin and trio in adult muscle progenitors. J Cell Sci 127(Pt 21):4634–4644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pi H, Huang YC, Chen IC, Lin CD, Yeh HF, Pai LM (2011) Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila. J Biomed Sci 18:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piccolo P, Attanasio S, Secco I, Sangermano R, Strisciuglio C, Limongelli G, Miele E, Mutarelli M, Banfi S, Nigro V, Pons T, Valencia A, Zentilin L, Campione S, Nardone G, Lynnes TC, Celestino-Soper PB, Spoonamore KG, D’Armiento FP, Giacca M, Staiano A, Vatta M, Collesi C, Brunetti-Pierri N (2017) MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrierlike gastropathy. Hum Mol Genet 26(1):33–43

    PubMed  CAS  Google Scholar 

  • Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69(5):840–855

    Article  CAS  PubMed  Google Scholar 

  • Pines MK, Housden BE, Bernard F, Bray SJ, Roper K (2010) The cytolinker Pigs is a direct target and a negative regulator of Notch signalling. Development 137(6):913–922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pink AE, Simpson MA, Desai N, Trembath RC, Barker JN (2013) gamma-Secretase mutations in hidradenitis suppurativa: new insights into disease pathogenesis. J Invest Dermatol 133(3):601–607

    Article  PubMed  CAS  Google Scholar 

  • Pitsouli C, Delidakis C (2005) The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 132(18):4041–4050

    Article  PubMed  CAS  Google Scholar 

  • Plunkett CR (1926) The interaction of genetic and environmental factors in development. J Exp Zool 46:181–244

    Article  CAS  Google Scholar 

  • Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342(8873):697–699

    Article  PubMed  CAS  Google Scholar 

  • PomBase (2017) https://www.pombase.org/

    Google Scholar 

  • Poulson DF (1936) Chromosome deficiencies and embryonic development. Ph.D. thesis, California Institute of Technology, CA, USA

    Google Scholar 

  • Poulson DF (1937) Chromosomal deficiencies and the embryonic development of Drosophila melanogaster. Proc Natl Acad Sci U S A 23(3):133–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pourquie O, Kusumi K (2001) When body segmentation goes wrong. Clin Genet 60(6):409–416

    Article  PubMed  CAS  Google Scholar 

  • Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI, Uitterlinden AG, Harris TB, Witteman JC, Boerwinkle E (2009) Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2(1):73–80

    Article  PubMed  PubMed Central  Google Scholar 

  • PubMed (2017) https://www.ncbi.nlm.nih.gov/pubmed/

  • Rajan A, Tien AC, Haueter CM, Schulze KL, Bellen HJ (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11(7):815–824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramoni RB, Mulvihill JJ, Adams DR, Allard P, Ashley EA, Bernstein JA, Gahl WA, Hamid R, Loscalzo J, McCray AT, Shashi V, Tifft CJ, Wise AL (2017) The undiagnosed diseases network: accelerating discovery about health and disease. Am J Hum Genet 100(2):185–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rana NA, Haltiwanger RS (2011) Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr Opin Struct Biol 21(5):583–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11(5):338–351

    Article  PubMed  CAS  Google Scholar 

  • Rat Genome Database (2017) http://rgd.mcw.edu/

  • Rauskolb C, Correia T, Irvine KD (1999) Fringe-dependent separation of dorsal and ventral cells in the Drosophila wing. Nature 401(6752):476–480

    Article  PubMed  CAS  Google Scholar 

  • Reddy GV, Rodrigues V (1999) A glial cell arises from an additional division within the mechanosensory lineage during development of the microchaete on the Drosophila notum. Development 126(20):4617–4622

    PubMed  CAS  Google Scholar 

  • Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76(3):477–491

    Article  PubMed  CAS  Google Scholar 

  • Roegiers F, Jan LY, Jan YN (2005) Regulation of membrane localization of Sanpodo by lethal giant larvae and neuralized in asymmetrically dividing cells of Drosophila sensory organs. Mol Biol Cell 16(8):3480–3487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rottgen G, Wagner T, Hinz U (1998) A genetic screen for elements of the network that regulates neurogenesis in Drosophila. Mol Gen Genet 257(4):442–451

    Article  PubMed  CAS  Google Scholar 

  • Royet J, Bouwmeester T, Cohen SM (1998) Notchless encodes a novel WD40-repeat-containing protein that modulates Notch signaling activity. EMBO J 17(24):7351–7360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rulifson EJ, Blair SS (1995) Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121(9):2813–2824

    PubMed  CAS  Google Scholar 

  • Rullinkov G, Tamme R, Sarapuu A, Lauren J, Sepp M, Palm K, Timmusk T (2009) Neuralized-2: expression in human and rodents and interaction with Delta-like ligands. Biochem Biophys Res Commun 389(3):420–425

    Article  PubMed  CAS  Google Scholar 

  • Rutten JW, Haan J, Terwindt GM, van Duinen SG, Boon EM, Lesnik Oberstein SA (2014) Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn 14(5):593–603

    Article  PubMed  CAS  Google Scholar 

  • Saccharomyces Genome Database (2017) http://www.yeastgenome.org/

  • Saj A, Arziman Z, Stempfle D, van Belle W, Sauder U, Horn T, Durrenberger M, Paro R, Boutros M, Merdes G (2010) A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network. Dev Cell 18(5):862–876

    Article  PubMed  CAS  Google Scholar 

  • Sakaidani Y, Ichiyanagi N, Saito C, Nomura T, Ito M, Nishio Y, Nadano D, Matsuda T, Furukawa K, Okajima T (2012) O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem Biophys Res Commun 419(1):14–19

    Article  PubMed  CAS  Google Scholar 

  • Saleh M, Kamath BM, Chitayat D (2016) Alagille syndrome: clinical perspectives. Appl Clin Genet 9:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandoval H, Yao CK, Chen K, Jaiswal M, Donti T, Lin YQ, Bayat V, Xiong B, Zhang K, David G, Charng WL, Yamamoto S, Duraine L, Graham BH, Bellen HJ (2014) Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. Elife 3: e03558.

    Google Scholar 

  • Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6(12B):2620–2634

    Article  PubMed  CAS  Google Scholar 

  • Sasamura T, Sasaki N, Miyashita F, Nakao S, Ishikawa HO, Ito M, Kitagawa M, Harigaya K, Spana E, Bilder D, Perrimon N, Matsuno K (2003) neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development 130(20):4785–4795

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Troost T, Grawe F, Martinez-Arias A, Klein T (2013) Activation of Notch in lgd mutant cells requires the fusion of late endosomes with the lysosome. J Cell Sci 126(Pt 2):645–656

    Article  PubMed  CAS  Google Scholar 

  • Schreiber SL, Preiss A, Nagel AC, Wech I, Maier D (2002) Genetic screen for modifiers of the rough eye phenotype resulting from overexpression of the Notch antagonist hairless in Drosophila. Genesis 33(3):141–152

    Article  PubMed  CAS  Google Scholar 

  • Schrons H, Knust E, Campos-Ortega JA (1992) The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics 132(2):481–503

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schwanbeck R (2015) The role of epigenetic mechanisms in Notch signaling during development. J Cell Physiol 230(5):969–981

    Article  PubMed  CAS  Google Scholar 

  • Schweisguth F (2015) Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. Wiley Interdiscip Rev Dev Biol 4(3):299–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweisguth F, Posakony JW (1992) Suppressor of Hairless, the Drosophila homolog of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell 69(7):1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Seidner GA, Ye Y, Faraday MM, Alvord WG, Fortini ME (2006) Modeling clinically heterogeneous presenilin mutations with transgenic Drosophila. Curr Biol 16(10):1026–1033

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selva EM, Hong K, Baeg GH, Beverley SM, Turco SJ, Perrimon N, Hacker U (2001) Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nat Cell Biol 3(9):809–815

    Article  PubMed  CAS  Google Scholar 

  • Sethi MK, Buettner FF, Krylov VB, Takeuchi H, Nifantiev NE, Haltiwanger RS, Gerardy-Schahn R, Bakker H (2010) Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J Biol Chem 285(3):1582–1586

    Article  PubMed  CAS  Google Scholar 

  • Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192(2):585–598

    Article  CAS  PubMed  Google Scholar 

  • Shalaby NA, Parks AL, Morreale EJ, Osswalt MC, Pfau KM, Pierce EL, Muskavitch MA (2009) A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182(4):1061–1076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shannon MP (1972) Characterization of the female-sterile mutant almondex of Drosophila melanogaster. Genetica 43(2):244–256

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375(6534):754–760

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Woodcock SA, Wilkin MB, Trubenova B, Monk NA, Baron M (2014) Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell 157(5):1160–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siman R, Reaume AG, Savage MJ, Trusko S, Lin YG, Scott RW, Flood DG (2000) Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. J Neurosci 20(23):8717–8726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43(4):303–305

    Article  PubMed  CAS  Google Scholar 

  • Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ (2015) Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 34(14):1889–1904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slaninova V, Krafcikova M, Perez-Gomez R, Steffal P, Trantirek L, Bray SJ, Krejci A (2016) Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle. Open Biol 6(2):150155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smoller D, Friedel C, Schmid A, Bettler D, Lam L, Yedvobnick B (1990) The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev 4(10):1688–1700

    Article  PubMed  CAS  Google Scholar 

  • Solinger JA, Spang A (2013) Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 280(12):2743–2757

    Article  PubMed  CAS  Google Scholar 

  • Southgate L, Sukalo M, Karountzos AS, Taylor EJ, Collinson CS, Ruddy D, Snape KM, Dallapiccola B, Tolmie JL, Joss S, Brancati F, Digilio MC, Graul-Neumann LM, Salviati L, Coerdt W, Jacquemin E, Wuyts W, Zenker M, Machado RD, Trembath RC (2015) Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver syndrome with variable cardiac anomalies. Circ Cardiovasc Genet 8(4):572–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78(1):28–37

    Article  PubMed  CAS  Google Scholar 

  • Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL (2008) Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17(23):3761–3766

    Article  PubMed  CAS  Google Scholar 

  • Sparrow DB, Chapman G, Dunwoodie SL (2011) The mouse notches up another success: understanding the causes of human vertebral malformation. Mamm Genome 22(7-8):362–376

    Article  PubMed  Google Scholar 

  • Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA, Duncan EL, Dunwoodie SL (2013) Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 22(8):1625–1631

    Article  PubMed  CAS  Google Scholar 

  • Stanley P, Okajima T (2010) Roles of glycosylation in Notch signaling. Curr Top Dev Biol 92:131–164

    Article  PubMed  CAS  Google Scholar 

  • Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S (1992) Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet 2(2):119–127

    Article  PubMed  CAS  Google Scholar 

  • Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 95(3):275–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Struhl G, Adachi A (2000) Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 6(3):625–636

    Article  PubMed  CAS  Google Scholar 

  • Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398(6727):522–525

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Yan Y, Denef N, Schupbach T (2011) Regulation of somatic myosin activity by protein phosphatase 1beta controls Drosophila oocyte polarization. Development 138(10):1991–2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tada M, Itoh S, Ishii-Watabe A, Suzuki T, Kawasaki N (2012) Functional analysis of the Notch ligand Jagged1 missense mutant proteins underlying Alagille syndrome. FEBS J 279(12):2096–2107

    Article  PubMed  CAS  Google Scholar 

  • Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, Matsumoto N, Ishizuka-Katsura Y, Nakayama T, Itoh N, Jiang J, Nishitomi K, Kamino K, Morihara T, Hashimoto R, Tanaka T, Kudo T, Chiba S, Takeda M (2008) Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 28(1):165–176

    Article  PubMed  CAS  Google Scholar 

  • Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K, Kramer H, Kovacs AL, Sass M, Juhasz G (2014) Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 25(8):1338–1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, Martin DI, Boffelli D (2014) Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 24(5):821–830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taniguchi Y, Furukawa T, Tun T, Han H, Honjo T (1998) LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol 18(1):644–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao J, Chen S, Lee B (2010) Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci 1192:257–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teider N, Scott DK, Neiss A, Weeraratne SD, Amani VM, Wang Y, Marquez VE, Cho YJ, Pomeroy SL (2010) Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma. Neuro-Oncology 12(12):1244–1256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terriente-Felix A, Li J, Collins S, Mulligan A, Reekie I, Bernard F, Krejci A, Bray S (2013) Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development 140(4):926–937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas U, Speicher SA, Knust E (1991) The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111(3):749–761

    PubMed  CAS  Google Scholar 

  • Tian X, Hansen D, Schedl T, Skeath JB (2004) Epsin potentiates Notch pathway activity in Drosophila and C. elegans. Development 131(23):5807–5815

    Article  PubMed  CAS  Google Scholar 

  • Tien AC, Rajan A, Schulze KL, Ryoo HD, Acar M, Steller H, Bellen HJ (2008) Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. J Cell Biol 182(6):1113–1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Troost T, Jaeckel S, Ohlenhard N, Klein T (2012) The tumour suppressor Lethal (2) giant discs is required for the function of the ESCRT-III component Shrub/CHMP4. J Cell Sci 125(Pt 3):763–776

    Article  PubMed  CAS  Google Scholar 

  • Troost T, Schneider M, Klein T (2015) A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet 11(1):e1004911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Udolph G (2012) Notch signaling and the generation of cell diversity in Drosophila neuroblast lineages. Adv Exp Med Biol 727:47–60

    Article  PubMed  CAS  Google Scholar 

  • Vaccari T, Bilder D (2005) The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell 9(5):687–698

    Article  PubMed  CAS  Google Scholar 

  • Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D (2008) Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 180(4):755–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, Stenmark H, Bilder D (2009) Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 122(Pt 14):2413–2423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaccari T, Duchi S, Cortese K, Tacchetti C, Bilder D (2010) The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137(11):1825–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallejo DM, Caparros E, Dominguez M (2011) Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J 30(4):756–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL (2009) Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 47(4):246–260

    Article  CAS  PubMed  Google Scholar 

  • Vassin H, Bremer KA, Knust E, Campos-Ortega JA (1987) The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J 6(11):3431–3440

    Article  PubMed  PubMed Central  Google Scholar 

  • Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8(9):737–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verheyen EM, Purcell KJ, Fortini ME, Artavanis-Tsakonas S (1996) Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics 144(3):1127–1141

    PubMed  PubMed Central  CAS  Google Scholar 

  • Veugelen S, Saito T, Saido TC, Chavez-Gutierrez L, De Strooper B (2016) Familial Alzheimer’s disease mutations in presenilin generate amyloidogenic abeta peptide seeds. Neuron 90(2):410–416

    Article  PubMed  CAS  Google Scholar 

  • Vienna Drosophila Resource Center (2017) http://stockcenter.vdrc.at/

  • Wahi K, Bochter MS, Cole SE (2016) The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 49:68–75

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Struhl G (2005) Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development 132(12):2883–2894

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tan KL, Agosto MA, Xiong B, Yamamoto S, Sandoval H, Jaiswal M, Bayat V, Zhang K, Charng WL, David G, Duraine L, Venkatachalam K, Wensel TG, Bellen HJ (2015) The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol 12(4):e1001847

    Article  CAS  Google Scholar 

  • Wang J, Al-Ouran R, Hu Y, Kim SY, Wan YW, Wangler MF, Yamamoto S, Chao HT, Comjean A, Mohr SE, Udn PN, Liu Z, Bellen HJ (2017) MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am J Hum Genet 100(6):843–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wangler MF, Yamamoto S, Bellen HJ (2015) Fruit flies in biomedical research. Genetics 199(3):639–653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wangler MF, Hu Y, Shulman JM (2017) Drosophila and genome-wide association studies: a review and resource for the functional dissection of human complex traits. Dis Model Mech 10(2):77–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber D, Wiese C, Gessler M (2014) Hey bHLH transcription factors. Curr Top Dev Biol 110:285–315

    Article  PubMed  CAS  Google Scholar 

  • Weinmaster G, Fischer JA (2011) Notch ligand ubiquitylation: what is it good for? Dev Cell 21(1):134–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welshons WJ (1956) Dosage experiments with split mutants in the presence of an enhancer of split. Drosophila Inf Serv 30:157–158

    Google Scholar 

  • Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43(3 Pt 2):567–581

    Article  CAS  PubMed  Google Scholar 

  • White PH, Farkas DR, Chapman DL (2005) Regulation of Tbx6 expression by Notch signaling. Genesis 42(2):61–70

    Article  PubMed  CAS  Google Scholar 

  • Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74(6):1249–1254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E, Matsuno K, Baron M (2008) Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell 15(5):762–772

    Article  PubMed  CAS  Google Scholar 

  • Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG (2009) Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 390(4):1093–1097

    Article  PubMed  CAS  Google Scholar 

  • WormBase (2017) http://www.wormbase.org/

    Google Scholar 

  • Wu L, Sun T, Kobayashi K, Gao P, Griffin JD (2002) Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 22(21):7688–7700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu N, Ming X, Xiao J, Wu Z, Chen X, Shinawi M, Shen Y, Yu G, Liu J, Xie H, Gucev ZS, Liu S, Yang N, Al-Kateb H, Chen J, Zhang J, Hauser N, Zhang T, Tasic V, Liu P, Su X, Pan X, Liu C, Wang L, Shen J, Shen J, Chen Y, Zhang T, Zhang J, Choy KW, Wang J, Wang Q, Li S, Zhou W, Guo J, Wang Y, Zhang C, Zhao H, An Y, Zhao Y, Wang J, Liu Z, Zuo Y, Tian Y, Weng X, Sutton VR, Wang H, Ming Y, Kulkarni S, Zhong TP, Giampietro PF, Dunwoodie SL, Cheung SW, Zhang X, Jin L, Lupski JR, Qiu G, Zhang F (2015) TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med 372(4):341–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wurmbach E, Wech I, Preiss A (1999) The Enhancer of split complex of Drosophila melanogaster harbors three classes of Notch responsive genes. Mech Dev 80(2):171–180

    Article  PubMed  CAS  Google Scholar 

  • Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ 3rd (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85(5):967–981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia D, Kelleher RJ 3rd, Shen J (2016) Loss of Abeta43 production caused by Presenilin-1 mutations in the Knockin mouse brain. Neuron 90(2):417–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie T, Song X, Jin Z, Pan L, Weng C, Chen S, Zhang N (2008) Interactions between stem cells and their niche in the Drosophila ovary. Cold Spring Harb Symp Quant Biol 73:39–47

    Article  PubMed  CAS  Google Scholar 

  • Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, Neely GG, Yamamoto S, Bellen HJ (2012) Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 10(12):e1001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu T, Artavanis-Tsakonas S (1990) deltex, a locus interacting with the neurogenic genes, Notch, Delta and mastermind in Drosophila melanogaster. Genetics 126(3):665–677

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117(4):1223–1237

    PubMed  CAS  Google Scholar 

  • Xu A, Haines N, Dlugosz M, Rana NA, Takeuchi H, Haltiwanger RS, Irvine KD (2007) In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. J Biol Chem 282(48):35153–35162

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Fuwa TJ, Ayukawa T, Tanaka T, Nakamura A, Wilkin MB, Baron M, Matsuno K (2011) Roles of Drosophila deltex in Notch receptor endocytic trafficking and activation. Genes Cells 16(3):261–272

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Charng WL, Bellen HJ (2010) Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 92:165–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamamoto S, Charng WL, Rana NA, Kakuda S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Wang H, Haltiwanger RS, Bellen HJ (2012) A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338(6111):1229–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers LE, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159(1):200–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17(3):387–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuhiko Y, Haraguchi S, Kitajima S, Takahashi Y, Kanno J, Saga Y (2006) Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc Natl Acad Sci U S A 103(10):3651–3656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye Y, Lukinova N, Fortini ME (1999) Neurogenic phenotypes and altered Notch processing in Drosophila Presenilin mutants. Nature 398(6727):525–529

    Article  PubMed  CAS  Google Scholar 

  • Yedvobnick B, Helms W, Barrett B (2001) Identification of chromosomal deficiencies that modify Drosophila mastermind mutant phenotypes. Genesis 30(4):250–258

    Article  PubMed  CAS  Google Scholar 

  • Yochem J, Greenwald I (1989) glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell 58(3):553–563

    Article  PubMed  CAS  Google Scholar 

  • Yochem J, Weston K, Greenwald I (1988) The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335(6190):547–550

    Article  PubMed  CAS  Google Scholar 

  • Yoon WH, Sandoval H, Nagarkar-Jaiswal S, Jaiswal M, Yamamoto S, Haelterman NA, Putluri N, Putluri V, Sreekumar A, Tos T, Aksoy A, Donti T, Graham BH, Ohno M, Nishi E, Hunter J, Muzny DM, Carmichael J, Shen J, Arboleda VA, Nelson SF, Wangler MF, Karaca E, Lupski JR, Bellen HJ (2017) Loss of Nardilysin, a Mitochondrial Co-chaperone for alpha-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron 93(1):115–131

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Takeuchi H, Takeuchi M, Liu Q, Kantharia J, Haltiwanger RS, Li H (2016) Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat Chem Biol 12(9):735–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ (2011) Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol 28:343–365

    Article  CAS  Google Scholar 

  • Yuan Z, Praxenthaler H, Tabaja N, Torella R, Preiss A, Maier D, Kovall RA (2016) Structure and function of the Su(H)-Hairless repressor complex, the major antagonist of notch signaling in Drosophila melanogaster. PLoS Biol 14(7):e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ (2016) Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours. Development 143(2):219–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanotti S, Canalis E (2010) Notch and the skeleton. Mol Cell Biol 30(4):886–896

    Article  PubMed  CAS  Google Scholar 

  • Zebrafish Information Network (2017) https://zfin.org/

  • Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87(5):833–844

    Article  PubMed  CAS  Google Scholar 

  • Zeng C, Younger-Shepherd S, Jan LY, Jan YN (1998) Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev 12(8):1086–1091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Liu M, Su Y, Du J, Zhu AJ (2012) A targeted in vivo RNAi screen reveals deubiquitinases as new regulators of Notch signaling. G3 (Bethesda) 2(12):1563–1575

    Article  CAS  Google Scholar 

  • Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ (2013) The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 200(6):807–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziemer A, Tietze K, Knust E, Campos-Ortega JA (1988) Genetic analysis of enhancer of split, a locus involved in neurogenesis in Drosophila melanogaster. Genetics 119(1):63–74

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose works we were not able to include. We thank Drs. Andrew K. Groves, Hamed Jafar-Nejad, Hillary K. Graves and Michael F. Wangler for constructive comments and helpful suggestions. S.Y. is supported by the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital (NRI Fellowship), the Naman Family Fund for Basic Research and the Caroline Wiess Law Fund for Research in Molecular Medicine (BCM Junior Faculty Seed Funding Program), Alzheimer’s Association (NIRH-15-364099), Simons Foundation Autism Research Initiative (Award#368479), and the National Institutes of Health (NIH, U54 NS093793). J.L.S. received support from the NIH (GMR2556929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salazar, J.L., Yamamoto, S. (2018). Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. In: Borggrefe, T., Giaimo, B. (eds) Molecular Mechanisms of Notch Signaling. Advances in Experimental Medicine and Biology, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-319-89512-3_8

Download citation

Publish with us

Policies and ethics