Skip to main content

LEDAkem: A Post-quantum Key Encapsulation Mechanism Based on QC-LDPC Codes

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2018)

Abstract

This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Gaborit, P., Gueron, S., Güneysu, T., Melchor, C.A., Misoczki, R., Persichetti, E., Sendrier, N., Tillich, J.P., Zémor, G.: BIKE: bit flipping key encapsulation (2017). http://bikesuite.org/files/BIKE.pdf

  2. Baldi, M., Bianchi, M., Chiaraluce, F.: Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems. In: Proceedings of the IEEE ICC 2013 - Workshop on Information Security over Noisy and Lossy Communication Systems, Budapest, Hungary, June 2013

    Google Scholar 

  3. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosystem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_17

    Chapter  Google Scholar 

  4. Baldi, M.: QC-LDPC Code-Based Cryptography. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02556-8

    Book  MATH  Google Scholar 

  5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAkem: Low dEnsity coDe-bAsed key encapsulation mechanism (2017). https://www.ledacrypt.org/

  6. Baldi, M., Bianchi, M., Chiaraluce, F.: Security and complexity of the McEliece cryptosystem based on QC-LDPC codes. IET Inf. Secur. 7(3), 212–220 (2012)

    Article  Google Scholar 

  7. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public key security for the McEliece cryptosystem. J. Cryptol. 29(1), 1–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardet, M., Barelli, E., Blazy, O., Torres, R.C., Couvreur, A., Gaborit, P., Otmani, A., Sendrier, N., Tillich, J.P.: BIG QUAKE: BInary Goppa QUAsi-cyclic Key Encapsulation (2017). https://bigquake.inria.fr/files/2017/12/proposal.pdf

  9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  Google Scholar 

  10. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35(1), 63–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  13. Cayrel, P.-L., Gueye, C.T., Mboup, E.H.M., Ndiaye, O., Persichetti, E.: Efficient implementation of hybrid encryption from coding theory. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 254–264. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8_17

    Chapter  Google Scholar 

  14. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryptosystem. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2016), Barcelona, Spain, pp. 1366–1370, July 2016

    Google Scholar 

  15. Fabšič, T., Gallo, O., Hromada, V.: Simple power analysis attack on the QC-LDPC McEliece cryptosystem. Tatra Mt. Math. Pub. 67(1), 85–92 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A reaction attack on the QC-LDPC McEliece cryptosystem. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 51–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_4

    Chapter  Google Scholar 

  17. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–90, March 2005

    Google Scholar 

  18. Goppa, V.D.: A new class of linear correcting codes. Probl. Pered. Inform. 6(3), 24–30 (1970)

    MathSciNet  MATH  Google Scholar 

  19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, pp. 212–219, May 1996

    Google Scholar 

  20. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_29

    Chapter  Google Scholar 

  21. Hofheinz, D., Hvelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017). https://eprint.iacr.org/2017/604

  22. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_5

    Chapter  Google Scholar 

  23. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_25

    Google Scholar 

  24. Leon, J.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inf. Theory 34(5), 1354–1359 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y.X., Deng, R., Wang, X.M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Löndahl, C., Johansson, T.: A new version of McEliece PKC based on convolutional codes. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 461–470. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34129-8_45

    Chapter  Google Scholar 

  27. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  Google Scholar 

  28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, pp. 114–116 (1978)

    Google Scholar 

  29. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: 2013 IEEE International Symposium on Information Theory, pp. 2069–2073, July 2013

    Google Scholar 

  30. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24

    Chapter  Google Scholar 

  31. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2000), Sorrento, Italy, p. 215, June 2000

    Google Scholar 

  32. National Institute of Standards and Technology: Post-quantum crypto project, December 2016. http://csrc.nist.gov/groups/ST/post-quantum-crypto/

  33. Niebuhr, R., Persichetti, E., Cayrel, P.L., Bulygin, S., Buchmann, J.: On lower bounds for information set decoding over \(f_q\) and on the effect of partial knowledge. Int. J. Inf. Coding Theory 4(1), 47–78 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15, 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  35. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. In: Proceedings of the First International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008

    Google Scholar 

  36. Peters, C.: Information-set decoding for linear codes over \(\mathbf{F}_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_7

    Chapter  Google Scholar 

  37. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  38. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. Cryptology ePrint Archive, Report 2017/1005 (2017). https://eprint.iacr.org/2017/1005

  39. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_4

    Chapter  Google Scholar 

  40. Shooshtari, M.K., Ahmadian-Attari, M., Johansson, T., Aref, M.R.: Cryptanalysis of McEliece cryptosystem variants based on quasi-cyclic low-density parity check codes. IET Inf. Secur. 10(4), 194–202 (2016)

    Article  Google Scholar 

  41. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

    Chapter  Google Scholar 

  43. de Vries, S.: Achieving 128-bit security against quantum attacks in OpenVPN. Master’s thesis, University of Twente, August 2016. http://essay.utwente.nl/70677/

Download references

Acknowledgments

Paolo Santini was partly funded by Namirial SpA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Baldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P. (2018). LEDAkem: A Post-quantum Key Encapsulation Mechanism Based on QC-LDPC Codes. In: Lange, T., Steinwandt, R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lecture Notes in Computer Science(), vol 10786. Springer, Cham. https://doi.org/10.1007/978-3-319-79063-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79063-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79062-6

  • Online ISBN: 978-3-319-79063-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics