Skip to main content

Remote Sensing and GIS in Mapping and Monitoring of Land Degradation

  • Chapter
  • First Online:
Geospatial Technologies in Land Resources Mapping, Monitoring and Management

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

The information on the extent and spatial distribution of various kinds of degraded lands is essential for strategic planning and development of degraded lands. Processes of land degradation can be broadly grouped into physical, chemical, and vegetal (biological) degradation. The physical processes include land degradation mainly due to water and wind erosion, compaction, crusting, and waterlogging. The chemical process includes salinization, alkalization, acidification, pollution, and nutrient depletion. The vegetal or biological processes on the other hand are reduction of organic matter content in the soils and degradation of vegetation. The use of remote sensing and geographic information system (GIS) techniques makes land degradation estimation and its spatial distribution feasible with reasonable costs and better accuracy in larger areas. The use of spaceborne multispectral data shown its potential in deriving information on the nature, extent, spatial distribution, and magnitude of various kinds of degraded lands. Assessment and monitoring of land degradation through remote sensing offer a series of advantages such as consistency of data, fairly near real-time reporting, and a source for having spatially explicit data. The integration of high-resolution remote sensing data and digital elevation models derived from satellites data like Cartosat-1 and Cartosat-2 and Light Detection and Ranging (LiDAR) with ground data has immense potential in assessment and monitoring of land degradation in local scales. In this chapter, application of remote sensing and GIS in assessment and mapping of physical, chemical, and vegetal degradation has been discussed. The study indicates that integrated remote sensing and GIS applications have immense potential in assessment, mapping and monitoring of land degradation with reasonable cost and better accuracy in larger areas that would otherwise require large inputs of human and material resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol IP (1990) Problem soils in India. In: Problem soils of Asia and the Pacific. FAO/RAPA, Bangkok, pp 153–165

    Google Scholar 

  • Ahmad M, Kutcher GP (1992) Irrigation planning with environmental considerations: a case study of Pakistan’s Indus basin. World Bank Technical Paper 166. World Bank, Washington DC, 196 pp

    Google Scholar 

  • Ajai RR, Arya AS, Dhinwa PS et al (2007) Desertification/land degradation atlas of India. Space Applications Centre, Ahmedabad. ISBN No. 978-81-909978-2-9

    Google Scholar 

  • Ajai RR, Arya AS, Dhinwa PS, Pathan SK, Ganeshraj K (2009) Desertification/land degradation status mapping of India. Curr Sci 97(10):1478–1483

    Google Scholar 

  • Al Mahawili SMH (1983) Satellite interpretation and laboratory spectral reflectance measurements of saline and gypsiferous soils of West Baghdad, Iraq. M.S. Thesis, Purdue University, West Lafayatte, Indian, USA

    Google Scholar 

  • Anonymous (1976) Report of National Commission on Agriculture, part V, IX and abridged report, Ministry of Agriculture and Irrigation, Govt. of India, New Delhi

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Article  Google Scholar 

  • Bali JS (1985) Problems of gullied and ravinous area -Policy, programmes and progress. In: Proceedings national seminar on soil conservation and watershed management, New Delhi, 17–18 September 1985

    Google Scholar 

  • Bangladesh (1992) Land degradation. Paper presented to FAO 21st regional conference for Asia and the Pacific, New Delhi

    Google Scholar 

  • Barrett EC, Curtis LF (1976) Introduction to environmental remote sensing. Chapman and Hall, London, p 336

    Google Scholar 

  • Bartsch KP, van Miegroet H, Boettinger J, Dobrwolski JP (2002) Using empirical erosion models and GIS to determine erosion risk at Camp Williams. J Soil Water Conserv 57:29–37

    Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ (1980) ANSWERS: a model for watershed planning. Trans Am Soc Agric Eng 23(4):938–944

    Article  Google Scholar 

  • Biswas A, Tewatia RK (1991) Nutrient balance in agro-climatic regions of India – an overview. Fert News 36(6):13–18

    Google Scholar 

  • Blanco PD, Metternicht GI, del Valle HF (2009) Improving the discrimination of vegetation and landforms patterns in sandy rangelands: a synergistic approach. Int J Remote Sens 30:2579–2605

    Article  Google Scholar 

  • Bowonder B (1981) The myth and reality of high yield varieties in Indian agriculture. Dev Chang 12(2):293–313

    Article  Google Scholar 

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. J Arid Soil and Rehabil 13(4):319–325

    Article  Google Scholar 

  • Carneiro FA, Zinck JA (1994) Mapping paleo-aeolian sand cover formations in the northern Amazon basin from TM images. ITC J 3:270–282

    Google Scholar 

  • Chaudhary MK, Aneja DR (1991) Impact of green revolution on long-term sustainability of land and water resources in Haryana. Indian J Agric Econ 45:428–432

    Google Scholar 

  • Chen Z, Elvidge CD, Groenveld DP (1998) Monitoring of seasonal dynamics of arid land vegetation using AVIRIS data. Remote Sens Environ 65:255–266

    Article  Google Scholar 

  • Choubey VK (1997) Detection and delineation of waterlogging by remote sensing techniques. J Indian Soc Remote Sens 25(2):123–135

    Article  Google Scholar 

  • Choubey VK (1998) Assessment of waterlogging in Sriram Sagar command area, India, by remote sensing. Water Resour Manag 12(5):343–357

    Article  Google Scholar 

  • Collado AD (2000) Spatio-temporal dynamics of dune patterns in semiarid Argentina: a neural network analysis. Edaphomatics Bull. no. 20. AICET-INTA, Buenos Aires, Argentina

    Google Scholar 

  • CSSRI (2007) Annual report 2006–07. Central Soil Salinity Research Institute, Karnal, India

    Google Scholar 

  • Das DC (1985) Problem of soil erosion and land degradation in India. Proceedings of the national seminar on the soil conservation and watershed management held on 17–18 September New Delhi

    Google Scholar 

  • De Ploey J (1989) A soil erosion map for Western Europe. Catena Verlag

    Google Scholar 

  • del Valle HF, Rostagno CM, Coronato FR, Bouza PJ, Blanco PD (2008) Sand dune activity in north-eastern Patagonia. J Arid Environ 72:411–422

    Article  Google Scholar 

  • Dhar BB, Jamal A, Ratan S (1991) Air pollution problem in an Indian open cast coal mining complex: a case study. Int J Surf Min Reclam Environ 5(2):83–88

    Article  Google Scholar 

  • Dhuruvanarayana VV, Ram Babu NP (1983) Estimation of soil erosion in India. J Irrig Drain Eng 109:419–434

    Article  Google Scholar 

  • Dregne HE, Chou NT (1994) Global desertification dimensions and costs. In: Dregne HE (ed) Degradation and restoration of arid lands. Texas Technical University, Lubbock

    Google Scholar 

  • Dwivedi R (1992) Monitoring and the study of the effects of image scale on delineation of salt-affected soils in the Indo-Gangetic plains. Int J Remote Sens 13(8):1527–1536

    Article  Google Scholar 

  • Dwivedi RS, Sreenivas K (1998) Delineation of salt-affected soils and waterlogged areas in the indo-Gangetic plains using IRS-1C LISS-III data. Int J Remote Sens 19:2739–2751

    Article  Google Scholar 

  • Dwivedi RS, Kumar AB, Tewari AN (1997a) The utility of multi-sensor data for mapping eroded lands. Int J Remote Sens 18:2303–2318

    Article  Google Scholar 

  • Dwivedi RS, Ravi Sankar T, Venkataratnam L, Karale RL, Gawande SP, Rao KVS, Senchuandhary S, Bhaumik KR, Mukherjee KK (1997b) The inventory and monitoring of eroded lands using remote sensing data. Int J Remote Sens 18:107–119

    Article  Google Scholar 

  • Dwivedi RS, Kothapalli RV, Singh AN (2008) Generation of farm-level information on salt-affected soils using IKONOS-II multispectral data. In: Metternicht G, Zinck J (eds) Remote sensing of soil salinization: impact on land management. CRC Press, Boca Raton

    Google Scholar 

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Pening de Vries FWT, Scherr SJ, Sompatpanit S (eds) Responses to land degradation. Proceedings of. 2nd international conference on land degradation and desertification, Khon Kaen, Thailand. Oxford Press, New Delhi

    Google Scholar 

  • FAO (1986) Status report on plant nutrition in fertilizer programmes countries in Asia and Pacific region. AGL/MISC/86/7. FAO, Rome

    Google Scholar 

  • FAO (2008a) Land degradation on the rise – one fourth of the world’s population affected says new study. Report by Food and Agricultural Organization. http://www.fao.org/newsroom/en/news/2008/1000874/index.html

  • FAO (2008b) LADA project documents FAO, internet website: http://www.fao.org/ ag/agl/agll/lada/ladaprojectdoc.pdf. Accessed 10 July 2017

  • FAO/RAPA (1992) Environmental issues in land and water development. FAO/RAPA, Bangkok. 488 pp (Includes country papers on Bangladesh, India, Nepal, Pakistan and Sri Lanka)

    Google Scholar 

  • Fernandez C, Wu JQ, McCool DK, Stockle CO (2003) Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. J Soil Water Conserv 58:128–136

    Google Scholar 

  • Franke J, Navratil P, Keuck V, Peterson K, Siegert F (2012) Monitoring fire and selective logging activities in tropical peat swamp forests. IEEE J Select Top Appl Earth Observ Remote Sens 5(6):1811–1820

    Article  Google Scholar 

  • Fu BJ, Zhao WW, Chen LD, Zhang QJ, Lu YH, Gulinck H, Poesen J (2005) Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the loess plateau of China. Land Degrad Dev 16:73–85

    Article  Google Scholar 

  • Gautam NC, Narayan LRA (1988) Wastelands in India. Pink Publishing House, Mathura, p 96

    Google Scholar 

  • Gautam AP, Webb EL, Shivakoti GP, Zoebisch MA (2003) Land use dynamics and landscape change pattern in a mountain watershed in Nepal. Agric Ecosyst Environ 99:83–96

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI, Wallingford

    Google Scholar 

  • Goossens R, Van Ranst E (1996) The use of remote sensing and GIS to detect gypsiferous soils in the Ismailia Province (Egypt). In the international conference on soils with gypsum, Lleida, Spain, 15–21. Accessed 15 Oct 2017

    Google Scholar 

  • Goossens R, Van Ranst E (1998) The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt). Geoderma 87(1–2):47–56

    Article  Google Scholar 

  • Gupta SK, Ahmed H, Hussain M, Pandey AS, Singh S, Saini KM, Das SN (1998) Inventory of degraded lands of Palamau district, Bihar: a remote sensing approach. J Indian Soc Remote Sens 26:161–168

    Article  Google Scholar 

  • Hillel D (2000) Salinity management for sustainable irrigation: integrating science, environment, and economics. World Bank Publications, Washington, DC

    Book  Google Scholar 

  • Hirschmugl M, Steinegger M, Gallaun H, Schardt M (2014) Mapping forest degradation due to selective logging by means of time series analysis: case studies in central Africa. Remote Sens 6:756–775

    Article  Google Scholar 

  • IPCC (2014) Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, Switzerland, 151 pp

    Google Scholar 

  • Jafari R, Lewis MM, Ostendorf B (2008) An image-based diversity for assessing land degradation in an arid environment in South Australia. J Arid Environ 72:1282–1293

    Article  Google Scholar 

  • Jha CS, Dutt CBS, Bawa KS (2000) Deforestation and land use changes in Western Ghats, India. Curr Sci 79:231–238

    Google Scholar 

  • Johnston RM, Barson MM (1993) Remote sensing of Australian wetlands: an evaluation of Landsat TM data for inventory and classification. Mar Freshw Res 44(2):235–252

    Article  Google Scholar 

  • Joshi MD, Sahai B (1993) Mapping of salt-affected land in Saurashtra coast using Landsat satellite data. Int J Remote Sens 14(10):1919–1929

    Article  Google Scholar 

  • Joshi PK, Tyagi NK (1991a) Sustainability of existing farming system in Punjab and Haryana – some issues in groundwater use. Indian J Agric Econ 46(3):412–421

    Google Scholar 

  • Joshi PK, Tyagi NK (1991b) Sustainability of existing farming system in Punjab and Haryana some issues on groundwater use. Indian J Agric Econ 46:412–421

    Google Scholar 

  • Kapalanga TS (2008) A review of land degradation assessment methods. Land restoration training programme Keldnaholt, 112 Reykjavík, Iceland, pp 17–68

    Google Scholar 

  • Karale RL, Saini KM, Narula KK (1987) Mapping and monitoring ravines using remotely sensed data. J Soil Water Conserv (India) 32(1–2):75–82

    Google Scholar 

  • Kessler CA, Stroosnijder L (2006) Land degradation assessment by farmers in Bolivian mountain valleys. Land Degrad Dev 17:235–248

    Article  Google Scholar 

  • Khan NM, Rastoskuev VV, Elrna VS, Yohei S (2001) Mapping salt affected soils using remote sensing indicators. In: 22nd Asian conference on remote sensing, Singapore, 5–9 November 2001

    Google Scholar 

  • Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: a synthesis report for REDD+ policymakers. Lexeme Consult, Vancouver

    Google Scholar 

  • Koofhafkan AP, Lantieri D, Nachtergaele F (2003) Land Degradation in Drylands (LADA): guidelines for a methodological approach. FAO, Rome

    Google Scholar 

  • Koohafkan P, Stewart BA (2012) Water and cereals in drylands, the food and agriculture. Organization of the United Nations and Earthscan, Rome

    Google Scholar 

  • Koshal AK (2010) Indices based salinity areas detection through remote sensing and GIS. In parts of south waste Punjab. In: 13th annual international conference and exhibition on geospatial information technology and applications, Gurgaon, India

    Google Scholar 

  • LADA (2009) Guidelines for the identification, selection and description of nationally based indicators of land degradation and improvement, land degradation assessment in drylands. UNEP, Rome

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  Google Scholar 

  • Lu D, Batistella M, Mausel P, Moran E (2007) Mapping and monitoring land degradation risks in the Western Brazilian Amazon using multitemporal Landsat TM/ETM+ images. Land Degrad Dev 18:41–54

    Article  Google Scholar 

  • Ma JW, Xue Y, Ma CF, Wang ZG (2003) A data fusion approach for soil erosion monitoring in the upper Yangtze river basin of China based on Universal Soil Loss Equation (USLE) model. Int J Remote Sens 24:4777–4789

    Article  Google Scholar 

  • Maji AK (2007) Assessment of degraded and wastelands of India. J Indian Soc Soil Sci 55:427–435

    Google Scholar 

  • Maji AK, Reddy GPO, Sarkar D (2010) Degraded and wastelands of India, status and spatial distribution. ICAR and NAAS Publication, New Delhi, pp 1–158

    Google Scholar 

  • Maji AK, Reddy GPO, Sarkar D (eds) (2012). Acid soils of India – their extent and spatial variability, NBSS Publ. No.145, NBSS&LUP, Nagpur, 147 p

    Google Scholar 

  • Mandal D, Sharda VN (2011) Assessment of permissible soil loss in India employing a quantitative bio-physical model. Curr Sci 100(3):383–390

    Google Scholar 

  • Metternicht G (2006) UN-Zambia-ESA regional workshop on the applications of GNSS in sub-Saharan Africa

    Google Scholar 

  • Metternicht GI, Zinck JA (1996) Modelling salinity-sodicity classes for mapping salt affected top soils in the semi-arid valleys of Cochabamba (Bolivia). ITC J 11:125–135

    Google Scholar 

  • Metternicht GI, Zinck JA (1997) Spatial discrimination of salt- and sodium-aff ected soil surfaces. Int J Remote Sens 18:2571–2586

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (1998) Evaluating de information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features. ISPRS J Photogramm Remote Sens 53:143–153

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (eds) (2008) Remote sensing of soil salinization: impact on land management. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Metternicht G, Zinck JA, Blanco PD, del Valle HF (2009) Remote sensing of land degradation: experiences from Latin America and the Caribbean. J Environ Qual 39:42–61

    Article  Google Scholar 

  • Miettinen J, Stibig H-J, Achard F (2014) Remote sensing of forest degradation in Southeast Asia-aiming for a regional view through 5–30 m satellite data. Glob Ecol Conserv 2:24–36

    Article  Google Scholar 

  • Millward AA, Mersey JE (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena 38:109–129

    Article  Google Scholar 

  • Mitasova H, Hofierka J, Zlocha M, Iverson LR (1996) Modelling topographic potential for erosion and deposition using GIS. Int J Geogr Inf Sci 10:629–641

    Article  Google Scholar 

  • Molnar DK, Julien PY (1998) Estimation of upland erosion using GIS. Comput Geosci 24:183–192

    Article  Google Scholar 

  • Morgan RPC, Morgan DDV, Finney HJ (1984) A predictive model for the assessment of soil erosion risk. J Agric Eng Res 30(1):245–253

    Article  Google Scholar 

  • National Commission on Agriculture (1976) Report of the National Commission on Agriculture: part V, IX and abridged. Ministry of Agriculture and Irrigation, New Delhi

    Google Scholar 

  • Navalgund RR, Jayaraman V, Roy PS (2007) Remote sensing applications: an overview. Curr Sci 93:1747–1766

    Google Scholar 

  • Nawar S, Buddenbaum H, Hill J, Kozak J (2014) Modeling and mapping of soil salinity with reflectance spectroscopy and Landsat data using two quantitative methods (PLSR and MARS). Remote Sens 6:10813–10834

    Article  Google Scholar 

  • Noomen M (2007) Groundwater monitoring using GRACE and ERS satellite image. In: Proceeding of the 28th Asian conference on remote sensing, Malaysia

    Google Scholar 

  • NRSA. (1996). Mapping salt-affected soils of India on 1:250,000. NRSA, Hyderabad

    Google Scholar 

  • NRSA (2005) Wasteland atlas of India. Ministry of Rural Development and NRSA Publ., NRSA, Hyderabad

    Google Scholar 

  • NRSA (2008) National wide mapping of land degradation on 1:50,000 scale using multi-temporal satellite data. NRSA, Hyderabad

    Google Scholar 

  • NSERL (1995) WEPP user summary. National Soil Erosion Research Laboratory, US Department of Agriculture. Accessed 10 September 2017

    Google Scholar 

  • NWDB (1985) Description, classification, identification and monitoring of wastelands. National Wastelands Development Board, Ministry of Environment and Forests. Govt. of India, New Delhi

    Google Scholar 

  • Oldeman LR (ed) (1988) Global Assessment of Soil Degradation (GLASOD). Guidelines for general assessment of status of human-induced soil degradation. ISRIC, Wageningen. Working paper and reprint no. 88 (4), pp 12

    Google Scholar 

  • Oldeman LR (1994) The global extent of land degradation. In: Greenland DJ, Szabolcs I (eds) Land resilience and sustainable land use. CABI, Wallingford, pp 99–118

    Google Scholar 

  • Oldeman RL, Hakkeling RTA, Sombroek WG (1990) World map of the status of human induced soil degradation. International soil reference and information Centre, Wageningen

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of Human Induced soil degradation: an explanatory note. ISRIC (International Soil Reference and Information Center), Wageningen

    Google Scholar 

  • Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, MOntanarella L, Alewell C (2015) The new assessment of soil loss by water erosion in Europe. Environ Sci Pol 54:438–447

    Article  Google Scholar 

  • Pandey PC, Rani M, Srivastava PK, Sharma LK, Nathawat MS (2013) Land degradation severity assessment with sand encroachment in an ecologically fragile arid environment: a geospatial perspective. Q Sci Connect 43:17

    Google Scholar 

  • Paningbatan EP (2001) Geographic information system assisted dynamic modeling of soil erosion and hydrologic processes at a watershed scale. Philippine Agric Sci 84(4):388–393

    Google Scholar 

  • Panta M, Kim K, Joshi C (2008) Temporal mapping of deforestation and forest degradation in Nepal: applications to forest conservation. For Ecol Manag 256:1587–1595

    Article  Google Scholar 

  • Pickup G, Chewings VH (1986) A grazing gradient approach to land degradation assessment in arid areas from remotely-sensed data. Int J Remote Sens 15:597–617

    Article  Google Scholar 

  • Pohl C, van Genderen JL (1998) Review article. Multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  • Raina P, Joshi DC, Kolarkar AS (1991) Land degradation mapping by remote sensing in the arid region of India. Soil Use Manag 7(1):47–51

    Article  Google Scholar 

  • Rao BRM, Venkataratnam L (1991) Monitoring of salt-affected soils- a case study using aerial photographs, Salyut-7 space photographs and Landsat-TM data. Geocarto Int 6(1):5–11

    Article  Google Scholar 

  • Rao BRM, Dwivedi RS, Venkataratnam L, Ravishankar TSS, Bhargawa GP, Singh AN (1991) Mapping the magnitude of sodicity in part of the indo-Gangetic plains of Uttar Pradesh, northern India using Landsat-TM data. Int J Remote Sens 12(3):419–425

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Srinivas CV, Velayutham M (2002) Geomorphological analysis for inventory of degraded lands in a river basin of basaltic terrain, using remote sensing data and geographical information systems. J Indian Soc Remote Sens 30(1&2):15–31

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Chary GR, Srinivas CV, Tiwary P, Gajbhiye KS (2004) GIS and remote sensing applications in prioritization of river sub basins using morphometric and USLE parameters – a case study. Asian J Geoinform 4(4):35–49

    Google Scholar 

  • Reddy GPO, Kurothe RS, Sena DR, Harindranath CS, Naidu LGK, Sarkar D, Sharda VN (2013). Soil erosion of Goa. NBSS Publ. 155. NBSS&LUP (ICAR), Nagpur, p 54

    Google Scholar 

  • Reddy GPO, Kurothe RS, Sena DR, Harindranath CS, Niranjana KV, Naidu LGK, Singh SK, Sarkar D, Mishra PK, Sharda VN (2016) Assessment of soil erosion in tropical ecosystem of Goa, India using universal soil loss equation, geostatistics and GIS. Indian J Soil Conserv 44(1):1–7

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA et al (1997) Predicting soil erosion by water – a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook No. 703, US Government Printing Office, Washington, DC

    Google Scholar 

  • Reusing M, Schneider T, Ammer U (2000) Modeling soil erosion rates in the Ethiopian highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS. Int J Remote Sens 21:1885–1896

    Article  Google Scholar 

  • Rhoades JD (1990) Soil salinity-causes and controls. In: Goudie AS (ed) Techniques for desert reclamation. Wiley, Chichester, pp 109–134

    Google Scholar 

  • Riksen M, Brouwer F, De Graaf J (2003) Soil conservation policy measures to control wind erosion in north-western Europe. Catena 52:309–326

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  Google Scholar 

  • Roy PS, Kushwaha SPS, Murthy MSR, Roy A, Kushwaha D, Reddy CS, Behera MD, Mathur VB, Padalia H, Saran S, Singh S, Jha CS, Porwal MC (2012) Biodiversity characterization at landscape level: national assessment 2012. Indian Institute of Remote Sensing, Dehradun, India, p 140

    Google Scholar 

  • Saini KM, Deb TK, Mitra PP, Ghatol SG (1999) Assessment of degraded lands of Puruliya district, West Bengal using remotely sensed data. J Indian Soc Remote Sens 27:23–30

    Article  Google Scholar 

  • Seghal JL, Saxena RK, Verma KS (1988) Soil resource inventory of India using image interpretation techniques, remote sensing is a tool for soil scientists. In the 5th symposium of the working group remote sensing ISSS, Budapest, pp 17–31

    Google Scholar 

  • Sehgal J, Abrol IP (1992) Land degradation statue: India. Desertification Bull 21:24–31

    Google Scholar 

  • Sehgal J, Abrol IP (1994) Soil degradation in India: status and impact. Oxford/IBH, New Delhi

    Google Scholar 

  • Sharma RC, Bhargawa GP (1988) Landsat imagery for mapping saline soils and wetlands in north-west India. Int J Remote Sens 9:69–84

    Article  Google Scholar 

  • Sharma KD, Walling DE, Probst JL (1997) Assessing the impact of overgrazing on soil erosion in arid regions at a range of spatial scales. Human impact on erosion and sedimentation. Proceedings of an international symposium of the fifth scientific assembly of the International Association of Hydrological Sci. (IAHS), Rabat, Morocco, pp 119–123

    Google Scholar 

  • Singh B (1992) Groundwater resources and agricultural development strategy: Punjab experience. Indian J Agric Econ 47:105–113

    Google Scholar 

  • Singh AN, Dwivedi RS (1989) Delineation of salt affected soils through digital analysis of Landsat- MSS data. Int J Remote Sens 10:83–92

    Article  Google Scholar 

  • Singh D, Meirelles MSP, Costa GA, Herlin I, Berroir JP, Silva EF (2006) Environmental degradation analysis using NOAA/AVHRR data. Adv Space Res 37(4):720–727

    Article  Google Scholar 

  • Sommerfeldt TG, Thompson MD, Pront NA (1985) Delineation and mapping of soil-salinity in southern Alberta from Landsat data. Can J Remote Sens 10(104–1):18

    Google Scholar 

  • Sonneveld BGJS, Dent DL (2009) How good is GLASOD? J Environ Manag 90:274–283

    Article  Google Scholar 

  • Srinivas CV, Maji AK, Reddy GPO, Chary GR (2002) Assessment of soil erosion using remote sensing and GIS in Nagpur district, Maharashtra, for prioritization and delineation of conservation units. J Indian Soc Remote Sens 30(4):197–211

    Article  Google Scholar 

  • Steffens M, Koebl A, Giese M, Kogel-Knabner I (2009) Spatial variability of top soils and vegetation in a grazed steppe ecosystem in inner Mongolia (PR China). J Plant Nutr Soil Sci 172:78–90

    Article  Google Scholar 

  • Suphan S, Honda K, Gupta AD, Eiumnoh A, Chen X (2004) Estimation of subsurface water level change from satellite data. In: Proceeding of 25th Asia conference remote sensing, Thailand, 1, pp 512–516

    Google Scholar 

  • Tandon HLS (1992) Assessment of soil nutrient depletion. Paper presented to FADINAP seminar, Fertilization and the environment, Chiang Mai, Thailand

    Google Scholar 

  • Tucker CJ, Newcomb WW, Dregne HE (1994) AVHRR data sets for determination of desert spatial extent. Int J Remote Sens 15:3547–3565

    Article  Google Scholar 

  • Twyford I (1994) Fertilizer use and crop yields. Paper presented to 4th National Congress of the Soil Science Society of Pakistan, Islamabad. 1992

    Google Scholar 

  • UNCCD (2015) Land matters for climate reducing the gap and approaching the target. Available from: http://www.unccd.int/Lists/SiteDocumentLibrary/Publications/2015Nov_Land_matters_For_Climate_ENG.pdf 2015

  • UNEP (1992) Desertification, land degradation [definitions]. Desertification Control Bull 21

    Google Scholar 

  • Vågen TG, Winowiecki LA, Abegaz A, Hadgu KM (2013) Landsat-based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia. Remote Sens Environ 134:266–275

    Article  Google Scholar 

  • Van Lynden GWJ, Oldeman LR (1997) The assessment of the status of human-induced soil degradation in south and South East Asia. UNEP/FAO and ISRIC, Wageningen

    Google Scholar 

  • Venkatratnam L (1983) Monitoring of soil salinity in indo-Gangetic plain of NW India using multi-date Landsat data. In: Proceedings of 17th international symposium on remote sensing of environment. Ann. Arbor, Michigan, USA 1, pp 369–377

    Google Scholar 

  • Verma KS, Saxena RK, Barthwal AK, Deshmukh SN (1994) Remote sensing technique for mapping salt affected soils. Int J Remote Sens 15(9):1901–1914

    Article  Google Scholar 

  • Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65:2–18

    Article  Google Scholar 

  • Vrieling A, de Jong SM, Sterk G, Rodrigues SC (2008) Timing of erosion and satellite data: a multi-resolution approach to soil erosion risk mapping. Int J Appl Earth Obs Geoinf 10:267–281

    Article  Google Scholar 

  • Wang G, Gertner G, Fang S, Anderson AB (2003) Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogramm Eng Remote Sens 69:889–898

    Article  Google Scholar 

  • Warren A, Khogali M (1992) Assessment of desertification and drought in the Sudano-Sahelian region IW−/99/. United Nations Sudano-Sahelian Office

    Google Scholar 

  • Wessels KJ, Prince SD, Frost PE, VanZyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91:47–67

    Article  Google Scholar 

  • Wiersma JL, Horton M (1976) Remote sensing applications for detection of saline seep. Report no. OWRD-44, South Dakota State University, Brookings, South Dakota, USA

    Google Scholar 

  • Wilson JP, Lorang MS (2000) Spatial models of soil erosion and GIS. In: Fotheringham AS, Wegener M (eds) Spatial models and GIS: new potential and new models. Taylor & Francis, Philadelphia, pp 83–108

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses – a guide to conservation planning, USDA agricultural handbook no 587

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.P.O., Kumar, N., Singh, S.K. (2018). Remote Sensing and GIS in Mapping and Monitoring of Land Degradation. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_20

Download citation

Publish with us

Policies and ethics