Skip to main content

Dynamical Properties of a Gene-Protein Model

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 830))

Included in the following conference series:

Abstract

A major limitation of the classical random Boolean network model of gene regulatory networks is its synchronous updating, which implies that all the proteins decay at the same rate. Here a model is discussed, where the network is composed of two different sets of nodes, labelled G and P with reference to “genes” and “proteins”. Each gene corresponds to a protein (the one it codes for), while several proteins can simultaneously affect the expression of a gene. Both kinds of nodes take Boolean values. If we look at the genes only, it is like adding some memory terms, so the new state of the gene subnetwork network does no longer depend upon its previous state only.

In general, these terms tend to make the dynamics of the network more ordered than that of the corresponding memoryless network. The analysis is focused here mostly on dynamical critical states. It has been shown elsewhere that the usual way of computing the Derrida parameter, starting from purely random initial conditions, can be misleading in strongly non-ergodic systems. So here the effects of perturbations on both genes’ and proteins’ levels is analysed, using both the canonical Derrida procedure and an “extended” one. The results are discussed. Moreover, the stability of attractors is also analysed, measured by counting the fraction of perturbations where the system eventually falls back onto the initial attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Subsequent simulation series where the decay time of each node is randomly chosen (with uniform probability) in [1, MDT] show that the main effect of choosing the decay times randomly with uniform probability between 1 and MDT is that of slightly soften the shape of the curves, without altering their behavior (data not shown).

References

  1. Aldana, M., Coppersmith, S., Kadanoff, L.P.: Boolean dynamics with random couplings. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science, pp. 23–89. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21789-5_2

    Chapter  Google Scholar 

  2. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  3. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  Google Scholar 

  4. Campioli, D., Villani, M., Poli, I., Serra, R.: Dynamical stability in random Boolean networks In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Frontiers in Artificial Intelligence and Applications, WIRN, vol. 234, pp. 120–128. IOS Press, Amsterdam (2011)

    Google Scholar 

  5. Darabos, C., Giacobini, M., Tomassini, M.: Generalized Boolean networks: how spatial and temporal choices influence their dynamics. In: Handbook of Research on Computational Methodologies in Gene Regulatory Networks, pp. 429–449. IGI Global, Hershey (2010)

    Google Scholar 

  6. Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)

    Article  Google Scholar 

  7. Derrida, B., Weisbuch, G.: Evolution of overlaps between configurations in random Boolean networks. J. Phys. 47, 1297–1303 (1986)

    Article  Google Scholar 

  8. Di Stefano, M.L., Villani, M., La Rocca, L., Kauffman, S.A., Serra, R.: Dynamically critical systems and power-law distributions: avalanches revisited. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015. CCIS, vol. 587, pp. 29–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32695-5_3

    Chapter  Google Scholar 

  9. Graudenzi, A., Serra, R., Villani, M., Damiani, C., Colacci, A., Kauffman, S.A.: Dynamical properties of a Boolean model of gene regulatory network with memory. J. Comput. Biol. 18, 1291–1303 (2011)

    Article  MathSciNet  Google Scholar 

  10. Graudenzi, A., Serra, R.: A new model of genetic network: the gene-protein network. In: Serra, R., Poli, I., Villani, M. (eds.) Artificial Life and Evolutionary Computation, pp. 283–291 (2009)

    Google Scholar 

  11. Graudenzi, A., Serra, R., Villani, M., Colacci, A., Kauffman, S.A.: Robustness analysis of a Boolean model of gene regulatory network with memory. J. Comput. Biol. 18(4), 559–577 (2011)

    Article  MathSciNet  Google Scholar 

  12. Kauffman, S.A.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)

    Article  Google Scholar 

  13. Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  14. Kauffman, S.A.: At Home in the Universe. Oxford University Press, New York (1995)

    Google Scholar 

  15. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  16. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  17. Shmulevich, I., Kauffman, S.A., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. U. S. A. 102, 13439–13444 (2005)

    Article  Google Scholar 

  18. Villani, M., Campioli, D., Damiani, C., Roli, A., Filisetti, A., Serra, R.: Dynamical regimes in non-ergodic random Boolean networks. Nat. Comput. 16(2), 353–363 (2017)

    Article  MathSciNet  Google Scholar 

  19. Darabos, C., Tomassini, M., Giacobini, M.: Dynamics of unperturbed and noisy generalized Boolean networks. J. Theor. Biol. 260(4), 531–544 (2009)

    Article  MathSciNet  Google Scholar 

  20. Roli, A., Villani, M., Filisetti, A., Serra, R.: Dynamical criticality: overview and open questions. J. Syst. Sci. Complex 30, 1–17 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sapienza, D., Villani, M., Serra, R. (2018). Dynamical Properties of a Gene-Protein Model. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics