Skip to main content

Novel Models to Study Stromal Cell-Leukocyte Interactions in Health and Disease

  • Chapter
  • First Online:
Stromal Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1060))

Abstract

To study human immunology in general and stromal immunology in particular, it is highly motivated to move from monolayers to 3D cultures, such as organotypic models, that better mimic the function of living tissue. These models can potentially contain most if not all cell types present in tissues, in combination with different extracellular matrix components that can critically affect cell phenotype. Besides their well-established use in studies of tissue-specific cells, such as epithelial cells, endothelial cells and stromal fibroblasts in combination with extracellular components, these models have also been shown to be valuable to study how tissue participates in the regulation of leukocyte differentiation and function. Organotypic models with leukocytes represent novel powerful tools to study human stromal immunology and mechanisms involved in the regulation of leukocyte functions and inflammatory processes in human health and disease. In particular, these models are robust, long-lived and reproducible and allow monitoring of disease progression in real time, as well as the mixing of cellular constituents from healthy and pathological tissues. These models are also easy to manipulate, either genetically or by adding external stimulants, such as cytokines and pathogens, to mimic pathological conditions. It is thus not surprising that these models are proposed to be useful in toxicology screening assays, evaluating therapeutic efficacy of drugs and antibiotics, as well as in personalized medicine. Within this chapter, the most recent developments in creating organotypic models for the purpose of study of human leukocyte and stromal cell interactions, in health and disease, will be discussed, in particular focusing on live imaging. Special emphasis will be given on an organotypic model resembling human lung and its usefulness in studying the fine control of physiological and pathological processes in human health and disease. Using these models in studies on human stromal cell and leukocyte interactions will likely help identifying novel disease traits and may point out new potential targets to monitor and treat human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003;14:526–32.

    Article  CAS  PubMed  Google Scholar 

  2. Svensson M, Maroof A, Ato M, et al. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity. 2004;21:805–16.

    Article  CAS  PubMed  Google Scholar 

  3. Wrenshall L. Role of the microenvironment in immune responses to transplantation. Springer Semin Immunopathol. 2003;25:199–213.

    Article  CAS  PubMed  Google Scholar 

  4. Gray TE, Guzman K, Davis CW, et al. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996;14:104–12.

    Article  CAS  PubMed  Google Scholar 

  5. Roskelley CD, Desprez PY, Bissell MJ. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A. 1994;91:12378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.

    Article  CAS  Google Scholar 

  7. Uller L, Leino M, Bedke N, et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-beta in bronchial epithelial cells from donors with asthma. Thorax. 2010;65:626–32.

    Google Scholar 

  8. Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206:2925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Black AF, Bouez C, Perrier E, et al. Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 2005;11:723–33.

    Article  CAS  PubMed  Google Scholar 

  11. Choe MM, Sporn PH, Swartz MA. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model. Am J Respir Cell Mol Biol. 2006;35:306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choe MM, Tomei AA, Swartz MA. Physiological 3D tissue model of the airway wall and mucosa. Nat Protoc. 2006;1:357–62.

    Article  PubMed  Google Scholar 

  13. Cukierman E, Pankov R, Stevens DR, et al. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708–12.

    Article  CAS  PubMed  Google Scholar 

  14. Mishra DK, Sakamoto JH, Thrall MJ, et al. Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PLoS One. 2012;7:e45308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belair DG, Whisler JA, Valdez J, et al. Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells. Stem Cell Rev. 2015;11:511–25.

    Google Scholar 

  16. Itoh M, Umegaki-Arao N, Guo Z, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8:e77673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen Hoang AT, Chen P, Juarez J, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302:L226–37.

    Article  CAS  PubMed  Google Scholar 

  18. Dezutter-Dambuyant C, Black A, Bechetoille N, et al. Evolutive skin reconstructions: from the dermal collagen-glycosaminoglycan-chitosane substrate to an immunocompetent reconstructed skin. Biomed Mater Eng. 2006;16:S85–94.

    PubMed  CAS  Google Scholar 

  19. Dongari-Bagtzoglou A, Kashleva H. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc. 2006;1:2012–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DuMont AL, Yoong P, Surewaard BG, et al. Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun. 2013;81:1830–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spaan AN, Henry T, van Rooijen WJ, et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe. 2013;13:584–94.

    Article  CAS  PubMed  Google Scholar 

  22. Hieshima K, Imai T, Baba M, et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol. 1997;159:1140–9.

    PubMed  CAS  Google Scholar 

  23. Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10:593–619.

    Article  CAS  PubMed  Google Scholar 

  24. Schutyser E, Richmond A, Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005;78:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Birkness KA, Deslauriers M, Bartlett JH, et al. An in vitro tissue culture bilayer model to examine early events in Mycobacterium tuberculosis infection. Infect Immun. 1999;67:653–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Cozens AL, Yezzi MJ, Kunzelmann K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994;10:38–47.

    Article  CAS  PubMed  Google Scholar 

  27. Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci. 2003;116:2377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26:120–6.

    Article  CAS  PubMed  Google Scholar 

  29. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–63.

    Article  CAS  PubMed  Google Scholar 

  30. Izumi K, Terashi H, Marcelo CL, et al. Development and characterization of a tissue-engineered human oral mucosa equivalent produced in a serum-free culture system. J Dent Res. 2000;79:798–805.

    Article  CAS  PubMed  Google Scholar 

  31. Popov L, Kovalski J, Grandi G, et al. Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection. Front Immunol. 2014;5:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7:211–24.

    Article  CAS  Google Scholar 

  33. Heijink IH, Brandenburg SM, Noordhoek JA, et al. Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing. Eur Respir J. 2010;35:894–903.

    Article  CAS  PubMed  Google Scholar 

  34. Bayless KJ, Kwak HI, Su SC. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat Protoc. 2009;4:1888–98.

    Article  CAS  PubMed  Google Scholar 

  35. Sacharidou A, Koh W, Stratman AN, et al. Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood. 2010;115:5259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson HK, Canfield SG, Shusta EV, et al. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells. 2014;32:3037–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song JJ, Ott HC. Bioartificial lung engineering. Am J Transplant. 2012;12:283–8.

    Article  CAS  PubMed  Google Scholar 

  38. Harrington H, Cato P, Salazar F, et al. Immunocompetent 3D Model of Human Upper Airway for Disease Modeling and In Vitro Drug Evaluation. Mol Pharm. 2014 Jul 7;11:2082–91.

    Google Scholar 

  39. Nguyen Hoang AT, Chen P, Bjornfot S, et al. Technical advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung. J Leukoc Biol. 2014;96:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen Hoang AT, Chen P, Juaréz J, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302:226–37.

    Article  CAS  Google Scholar 

  41. Parasa VR, Rahman MJ, Ngyuen Hoang AT, et al. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis Model Mech. 2014;7:281–8.

    Article  CAS  PubMed  Google Scholar 

  42. Minoo P, King RJ. Epithelial-mesenchymal interactions in lung development. Annu Rev Physiol. 1994;56:13–45.

    Article  CAS  PubMed  Google Scholar 

  43. Myerburg MM, Latoche JD, McKenna EE, et al. Hepatocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1352–60.

    Article  CAS  PubMed  Google Scholar 

  44. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  Google Scholar 

  45. Guilliams M, Lambrecht BN, Hammad H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 2013;6:464–73.

    Article  CAS  PubMed  Google Scholar 

  46. Pluddemann A, Mukhopadhyay S, Gordon S. Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev. 2011;240:11–24.

    Article  CAS  PubMed  Google Scholar 

  47. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  48. Lambrecht BN, Hammad H. Biology of lung dendritic cells at the origin of asthma. Immunity. 2009;31:412–24.

    Article  CAS  PubMed  Google Scholar 

  49. Godiska R, Chantry D, Raport CJ, et al. Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med. 1997;185:1595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imai T, Yoshida T, Baba M, et al. Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J Biol Chem. 1996;271:21514–21.

    Article  CAS  PubMed  Google Scholar 

  51. Pichavant M, Taront S, Jeannin P, et al. Impact of bronchial epithelium on dendritic cell migration and function: modulation by the bacterial motif KpOmpA. J Immunol. 2006;177(9):5912.

    Article  CAS  PubMed  Google Scholar 

  52. Loffler B, Hussain M, Grundmeier M, et al. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog. 2010;6:e1000715.

    Google Scholar 

  53. Puissegur MP, Botanch C, Duteyrat JL, et al. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol. 2004;6:423–33.

    Article  CAS  PubMed  Google Scholar 

  54. Kapoor N, Pawar S, Sirakova TD, et al. Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS One. 2013;8:e53657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stoop EJ, Schipper T, Huber SK, et al. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech. 2011;4:526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Volkman HE, Clay H, Beery D, et al. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2004;2:e367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mairpady Shambat S, Chen P, Nguyen Hoang AT, et al. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis Model Mech. 2015;8:1413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Inoshima I, Inoshima N, Wilke GA, et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med. 2011;17:1310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A. 2010;107:13473–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22.

    Article  CAS  PubMed  Google Scholar 

  63. ONeill LA, Golenbock D, Bowie AG. The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol. 2013;13:453–60.

    Article  CAS  Google Scholar 

  64. Iwasaki A. Mucosal dendritic cells. Annu Rev Immunol. 2007;25:381–418.

    Article  CAS  PubMed  Google Scholar 

  65. de la Rosa G, Longo N, Rodriguez-Fernandez JL, et al. Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol. 2003;73:639–49.

    Article  CAS  PubMed  Google Scholar 

  66. Jimenez F, Quinones MP, Martinez HG, et al. CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010;184:5571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Acton SE, Astarita JL, Malhotra D, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity. 2012;37:276–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gunzer M, Friedl P, Niggemann B, et al. Migration of dendritic cells within 3-D collagen lattices is dependent on tissue origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J Leukoc Biol. 2000;67:622–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Our work is supported by grants from the Karolinska Institutet, Stockholm County Council, the Swedish Research Council and Knut and Alice Wallenberg Foundation. This study was, in part, performed at the Live Cell Imaging Unit, Department of Biosciences and Nutrition, Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Svensson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svensson, M., Chen, P. (2018). Novel Models to Study Stromal Cell-Leukocyte Interactions in Health and Disease. In: Owens, B., Lakins, M. (eds) Stromal Immunology. Advances in Experimental Medicine and Biology, vol 1060. Springer, Cham. https://doi.org/10.1007/978-3-319-78127-3_8

Download citation

Publish with us

Policies and ethics