Skip to main content

The Heterogeneity of Lipid Metabolism in Cancer

  • Chapter
The Heterogeneity of Cancer Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

  • 4032 Accesses

Abstract

The study of cancer cell metabolism has traditionally focused on glycolysis and glutaminolysis. However, lipidomic technologies have matured considerably over the last decade and broadened our understanding of how lipid metabolism is relevant to cancer biology [1–3]. Studies now suggest that the reprogramming of cellular lipid metabolism contributes directly to malignant transformation and progression [4, 5]. For example, de novo lipid synthesis can supply proliferating tumor cells with phospholipid components that comprise the plasma and organelle membranes of new daughter cells [6, 7]. Moreover, the upregulation of mitochondrial β-oxidation can support tumor cell energetics and redox homeostasis [8], while lipid-derived messengers can regulate major signaling pathways or coordinate immunosuppressive mechanisms [9–11]. Lipid metabolism has therefore become implicated in a variety of oncogenic processes, including metastatic colonization, drug resistance, and cell differentiation [10, 12–16]. However, whether we can safely and effectively modulate the underlying mechanisms for cancer therapy is still an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxy-nonenal

ω-3/6:

Omega-3/6 fatty acid

ACC:

Acetyl-coenzyme A carboxylase

ACLY:

Adenosine triphosphate citrate lyase

ACSL3:

Acyl-coenzyme A synthetase long-chain family member 3

ACSS2:

Acyl-coenzyme A synthetase short-chain family member 2

AMPK:

Adenosine monophosphate-activated protein kinase

ATP:

Adenosine triphosphate

BMI:

Body mass index

BTA:

Benzene-tricarboxylate

CD36:

Cluster of differentiation 36 protein

CTP:

Citrate transporter protein

CoA:

Coenzyme A

CPT1:

Carnitine palmitoyltransferase 1

DNA:

Deoxyribonucleic acid

DNLS:

De novo lipid synthesis

EMT:

Epithelial-mesenchymal transition

ERS:

Endoplasmic reticulum stress

FADH2:

Flavin adenine dinucleotide

FAO:

Fatty acid oxidation

FAS:

Fatty acid synthase

FATP:

Fatty acid transport protein

GBM:

Glioblastoma multiforme

HFD:

High-fat diet

HMGCR:

3-Hydroxy-3-methylglutaryl-coenzyme A reductase

IDH:

Isocitrate dehydrogenase

LD:

Lipid droplet

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

PE:

Phosphatidylethanolamine

PIP2:

Phosphatidylinositol-4,5-bisphosphate

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

SCD:

Stearoyl-coenzyme A desaturase

TCA:

Tricarboxylic acid

TG:

Triglyceride

TME:

Tumor microenvironment

References

  1. Ma, X., et al. (2016). Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proceedings of the National Academy of Sciences, 113(10), 2573–2578.

    Article  CAS  Google Scholar 

  2. Shevchenko, A., & Simons, K. (2010). Lipidomics: Coming to grips with lipid diversity. Nature Reviews Molecular Cell Biology, 11, 593.

    Article  PubMed  CAS  Google Scholar 

  3. Yang, K., & Han, X. (2016). Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41(11), 954–969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science Advances, 2(5), e1600200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016). Lipid metabolic reprogramming in cancer cells. Oncogene, 5, e189.

    Article  CAS  Google Scholar 

  6. Zalba, S., & ten Hagen, T. L. M. (2017). Cell membrane modulation as adjuvant in cancer therapy. Cancer Treatment Reviews, 52, 48–57.

    Article  PubMed  CAS  Google Scholar 

  7. Rysman, E., et al. (2010). De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Research, 70(20), 8117–8126.

    Article  PubMed  CAS  Google Scholar 

  8. Jeon, S.-M., Chandel, N. S., & Hay, N. (2012). AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485, 661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ayala, A., et al. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 31.

    Article  CAS  Google Scholar 

  10. Keckesova, Z., et al. (2017). LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature, 543, 681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pascual, G., et al. (2016). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541, 41.

    Article  PubMed  CAS  Google Scholar 

  13. Viswanathan, V. S., et al. (2017). Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547, 453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Luo, X., et al. (2017). Emerging roles of lipid metabolism in cancer metastasis. Molecular Cancer, 16, 76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hendrich, A. B., & Michalak, K. (2003). Lipids as a target for drugs modulating multidrug resistance of cancer cells. Current Drug Targets, 4(1), 23–30.

    Article  PubMed  CAS  Google Scholar 

  16. Tadros, S., et al. (2017). De novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Research, 77(20), 5503–5517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ellsworth, R. E., et al. (2017). Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Seminars in Cell & Developmental Biology, 64, 65–72.

    Article  CAS  Google Scholar 

  18. Greaves, M. (2015). Evolutionary determinants of cancer. Cancer Discovery, 5(8), 806–820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jamal-Hanjani, M., et al. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(6), 1258–1266.

    Article  CAS  Google Scholar 

  20. McGranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628.

    Article  PubMed  CAS  Google Scholar 

  21. Strickaert, A., et al. (2016). Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene, 36, 2637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: A looking glass for cancer? Nature Reviews Cancer, 12, 323.

    Article  PubMed  CAS  Google Scholar 

  23. Hiley, C., et al. (2014). Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biology, 15(8), 453.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Catalina-Rodriguez, O., et al. (2012). The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget, 3(10), 1220–1235.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szutowicz, A., Kwiatkowski, J., & Angielski, S. (1979). Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. British Journal of Cancer, 39(6), 681–687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Migita, T., et al. (2008). ATP citrate lyase: Activation and therapeutic implications in non–small cell lung cancer. Cancer Research, 68(20), 8547.

    Article  PubMed  CAS  Google Scholar 

  27. Yahagi, N., et al. (2005). Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. European Journal of Cancer, 41(9), 1316–1322.

    Article  PubMed  CAS  Google Scholar 

  28. Turyn, J., et al. (2003). Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Hormone and Metabolic Research, 35(10), 565–569.

    Article  PubMed  CAS  Google Scholar 

  29. McGarry, J. D., Leatherman, G. F., & Foster, D. W. (1978). Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. Journal of Biological Chemistry, 253(12), 4128–4136.

    PubMed  CAS  Google Scholar 

  30. Wang, C., et al. (2015). The acetyl-CoA carboxylase enzyme: A target for cancer therapy? Expert Review of Anticancer Therapy, 15(6), 667–676.

    Article  PubMed  CAS  Google Scholar 

  31. Savage, D. B., et al. (2006). Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. Journal of Clinical Investigation, 116(3), 817–824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Milgraum, L. Z., et al. (1997). Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clinical Cancer Research, 3(11), 2115–2120.

    PubMed  CAS  Google Scholar 

  33. Swinnen, J. V., et al. (2000). Selective activation of the fatty acid synthesis pathway in human prostate cancer. International Journal of Cancer, 88(2), 176–179.

    Article  PubMed  CAS  Google Scholar 

  34. Nelson, M. E., et al. (2017). Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nature Communications, 8, 14689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. The Cancer Genome Atlas Research Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456), 43–49.

    Article  CAS  PubMed Central  Google Scholar 

  36. Calvisi, D. F., et al. (2011). Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology, 140(3), 1071–1083.e5.

    Article  PubMed  CAS  Google Scholar 

  37. Hilvo, M., et al. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast Cancer progression. Cancer Research, 71(9), 3236–3245.

    Article  PubMed  CAS  Google Scholar 

  38. Beckers, A., et al. (2007). Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Research, 67(17), 8180–8187.

    Article  PubMed  CAS  Google Scholar 

  39. Jones, J. E. C., et al. (2017). Inhibition of acetyl-CoA carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and De novo lipogenesis of EGFRvIII human glioblastoma cells. PLoS One, 12(1), e0169566.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Petrova, E., et al. (2017). Acetyl-CoA carboxylase inhibitors attenuate WNT and hedgehog signaling and suppress pancreatic tumor growth. Oncotarget, 8(30), 48660–48670.

    Article  PubMed  Google Scholar 

  41. Rios Garcia, M., et al. (2017). Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metabolism, 26(6), 842–855.e5.

    Article  CAS  PubMed  Google Scholar 

  42. Zakikhani, M., et al. (2006). Metformin is an AMP kinase–dependent growth inhibitor for breast Cancer cells. Cancer Research, 66(21), 10269–10273.

    Article  CAS  PubMed  Google Scholar 

  43. Knowles, L.M., et al. (2008). Inhibition of Fatty-acid Synthase Induces Caspase-8-mediated Tumor Cell Apoptosis by Up-regulating DDIT4. The Journal of Biological Chemistry, 283(46), 31378–31384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moreau, K., et al. (2006). BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. Journal of Biological Chemistry, 281(6), 3172–3181.

    Article  CAS  PubMed  Google Scholar 

  45. Chajès, V., et al. (2006). Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Research, 66(10), 5287–5294.

    Article  CAS  PubMed  Google Scholar 

  46. Swinnen, J. V., Brusselmans, K., & Verhoeven, G. (2006). Increased lipogenesis in cancer cells: New players, novel targets. Current Opinion in Clinical Nutrition and Metabolic Care, 9(4), 358–365.

    Article  CAS  PubMed  Google Scholar 

  47. Alo, P. L., et al. (1996). Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer, 77(3), 474–482.

    Article  CAS  PubMed  Google Scholar 

  48. Swinnen, J. V., et al. (2002). Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. International Journal of Cancer, 98(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  49. Kridel, S. J., et al. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64(6), 2070–2075.

    Article  CAS  PubMed  Google Scholar 

  50. Zaytseva, Y. Y., et al. (2012). Inhibition of fatty acid synthase attenuates CD44-associated Signaling and reduces metastasis in colorectal cancer. Cancer Research, 72(6), 1504–1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Heuer, T. S., et al. (2017). FASN inhibition and Taxane treatment combine to enhance anti-tumor efficacy in diverse Xenograft tumor models through disruption of tubulin palmitoylation and microtubule organization and FASN inhibition-mediated effects on oncogenic signaling and gene expression. eBioMedicine, 16, 51–62.

    Article  PubMed  Google Scholar 

  52. Jiang, L., et al. (2015). Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene, 34(30), 3908–3916.

    Article  CAS  PubMed  Google Scholar 

  53. Dean, E. J., et al. (2016). Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. Journal of Clinical Oncology, 34(15_suppl), 2512–2512.

    Article  Google Scholar 

  54. Falkenburger, B. H., et al. (2010). Phosphoinositides: Lipid regulators of membrane proteins. The Journal of Physiology, 588(Pt 17), 3179–3185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Samuels, Y., et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science, 304(5670), 554.

    Article  CAS  PubMed  Google Scholar 

  56. Samuels, Y., & Velculescu, V. E. (2004). Oncogenic mutations of PIK3CA in human cancers. Cell Cycle, 3(10), 1221–1224.

    Article  CAS  PubMed  Google Scholar 

  57. Tennant, D. A., Duran, R. V., & Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nature Reviews. Cancer, 10(4), 267–277.

    Article  CAS  PubMed  Google Scholar 

  58. Ricoult, S. J. H., et al. (2016). Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene, 35(10), 1250–1260.

    Article  CAS  PubMed  Google Scholar 

  59. Gouw, A. M., et al. (2017). Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 114(17), 4300–4305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Polivka, J., & Janku, F. (2014). Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacology & Therapeutics, 142(2), 164–175.

    Article  CAS  Google Scholar 

  61. Downward, J. (2003). Targeting RAS signaling pathways in cancer therapy. Nature Reviews Cancer, 3, 11.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, Y.-A., et al. (2002). Activation of fatty acid synthesis during neoplastic transformation: Role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Experimental Cell Research, 279(1), 80–90.

    Article  PubMed  CAS  Google Scholar 

  63. Che, L., et al. (2017). Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle, 16(6), 499–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ventura, R., et al. (2015). Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. eBioMedicine, 2(8), 808–824.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hatzivassiliou, G., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.

    Article  PubMed  CAS  Google Scholar 

  66. Hanai, J.-I., et al. (2012). Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. Journal of Cellular Physiology, 227(4), 1709–1720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Svensson, R. U., et al. (2016). Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small cell lung cancer in preclinical models. Nature Medicine, 22(10), 1108–1119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Uddin, S., et al. (2010). Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Molecular Cancer Therapeutics, 9(5), 1244–1255.

    Article  PubMed  CAS  Google Scholar 

  69. Wieduwilt, M. J., & Moasser, M. M. (2008). The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cellular and Molecular Life Sciences: CMLS, 65(10), 1566–1584.

    Article  PubMed  CAS  Google Scholar 

  70. Sierra, J. R., & Tsao, M.-S. (2011). c-MET as a potential therapeutic target and biomarker in cancer. Therapeutic Advances in Medical Oncology, 3(1 Suppl), S21–S35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hanai, J. I., et al. (2013). ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death & Disease, 4(6), e696.

    Article  CAS  Google Scholar 

  72. Chen, Y., et al. (2016). mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer. Oncotarget, 7(18), 25224–25240.

    PubMed  PubMed Central  Google Scholar 

  73. Corominas-Faja, B., et al. (2014). Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget, 5(18), 8306–8316.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Menendez, J. A., et al. (2004). Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10715–10720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Giró-Perafita, A., et al. (2016). Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple-negative breast cancer. Clinical Cancer Research, 22(18), 4687–4697.

    Article  PubMed  CAS  Google Scholar 

  76. Menendez, J. A., & Lupu, R. (2017). Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogene, 6, e299.

    Article  CAS  Google Scholar 

  77. Vellaichamy, A., et al. (2010). “Topological significance” analysis of gene expression and proteomic profiles from prostate cancer cells reveals key mechanisms of androgen response. PLoS One, 5(6), e10936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Li, J.-N., et al. (2001). Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Research, 61(4), 1493–1499.

    PubMed  CAS  Google Scholar 

  79. Liu, D., et al. (2016). Wnt/β-catenin signaling participates in the regulation of lipogenesis in the liver of juvenile turbot (Scophthalmus maximus L.). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 191, 155–162.

    Article  CAS  Google Scholar 

  80. Seo, M. H., et al. (2016). Exendin-4 inhibits hepatic lipogenesis by increasing β-catenin signaling. PLoS One, 11(12), e0166913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gelebart, P., et al. (2012). Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma. PLoS One, 7(4), e33738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Yoon, S., et al. (2007). Up-regulation of acetyl-CoA carboxylase α and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. Journal of Biological Chemistry, 282(36), 26122–26131.

    Article  PubMed  CAS  Google Scholar 

  83. Daemen, A., et al. (2015). Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 112(32), E4410–E4417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Xie, H., & Simon, M. C. (2017). Oxygen availability and metabolic reprogramming in cancer. The Journal of Biological Chemistry, 292(41), 16825–16832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bensaad, K., et al. (2014). Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Reports, 9(1), 349–365.

    Article  PubMed  CAS  Google Scholar 

  86. Kamphorst, J. J., et al. (2013). Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8882–8887.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Young, R. M., et al. (2013). Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes & Development, 27(10), 1115–1131.

    Article  CAS  Google Scholar 

  88. Sounni, N. E., et al. (2014). Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metabolism, 20(2), 280–294.

    Article  PubMed  CAS  Google Scholar 

  89. Daniëls, V. W., et al. (2014). Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS One, 9(9), e106913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zaidi, N., et al. (2012). ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Molecular Cancer Therapeutics, 11(9), 1925–1935.

    Article  PubMed  CAS  Google Scholar 

  91. Lakhter, A. J., et al. (2016). Glucose-independent acetate metabolism promotes melanoma cell survival and tumor growth. The Journal of Biological Chemistry, 291(42), 21869–21879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tamura, K., et al. (2009). Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Research, 69(20), 8133–8140.

    Article  PubMed  CAS  Google Scholar 

  93. Jump, D. B., Torres-Gonzalez, M., & Olson, L. K. (2011). Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochemical Pharmacology, 81(5), 649–660.

    Article  PubMed  CAS  Google Scholar 

  94. Yang, W. S., et al. (2012). Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. Journal of Proteome Research, 11(2), 1078–1088.

    Article  PubMed  CAS  Google Scholar 

  95. Clendening, J. W., et al. (2010). Dysregulation of the mevalonate pathway promotes transformation. Proceedings of the National Academy of Sciences, 107(34), 15051–15056.

    Article  Google Scholar 

  96. Platz, E. A., et al. (2006). Statin drugs and risk of advanced prostate Cancer. Journal of the National Cancer Institute, 98(24), 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  97. Poynter, J. N., et al. (2005). Statins and the risk of colorectal cancer. New England Journal of Medicine, 352(21), 2184–2192.

    Article  PubMed  CAS  Google Scholar 

  98. Nielsen, S. F., Nordestgaard, B. G., & Bojesen Statin, S. E. (2012). Use and reduced cancer-related mortality. New England Journal of Medicine, 367(19), 1792–1802.

    Article  PubMed  CAS  Google Scholar 

  99. Clendening, J. W., & Penn, L. Z. (2012). Targeting tumor cell metabolism with statins. Oncogene, 31, 4967.

    Article  PubMed  CAS  Google Scholar 

  100. Campbell, M. J., et al. (2006). Breast cancer growth prevention by statins. Cancer Research, 66(17), 8707–8714.

    Article  PubMed  CAS  Google Scholar 

  101. Zhong, C., et al. (2014). HMGCR is necessary for the tumorigenecity of esophageal squamous cell carcinoma and is regulated by Myc. Tumor Biology, 35(5), 4123–4129.

    Article  PubMed  CAS  Google Scholar 

  102. Wang, X., et al. (2017). MYC-regulated mevalonate metabolism maintains brain tumor–initiating cells. Cancer Research, 77(18), 4947–4960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Juneja, M., et al. (2017). Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biology, 15(6), e2000784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Fujiwara, D., et al. (2017). Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells. Tumor Biology, 39(10), 1010428317734947.

    Article  PubMed  Google Scholar 

  105. Karagkounis, G., et al. (2017). Simvastatin enhances radiation sensitivity of colorectal cancer cells. Surgical Endoscopy, 32(3), 1533–1539.

    Article  PubMed  Google Scholar 

  106. Lipkin, S. M., et al. (2010). Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase modifies the chemopreventive activity of statins for colorectal cancer. Cancer Prevention Research, 3(5), 597–603.

    Article  PubMed  CAS  Google Scholar 

  107. Menter, D. G., et al. (2011). Differential effects of pravastatin and simvastatin on the growth of tumor cells from different organ sites. PLoS One, 6(12), e28813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lee, Y., et al. (2017). Randomized phase II study of afatinib plus simvastatin versus afatinib alone in previously treated patients with advanced nonadenocarcinomatous non-small cell lung cancer. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 49(4), 1001–1011.

    Article  CAS  Google Scholar 

  109. Baas, J. M., et al. (2015). Safety and efficacy of the addition of simvastatin to panitumumab in previously treated KRAS mutant metastatic colorectal cancer patients. Anti-Cancer Drugs, 26(8), 872–877.

    Article  PubMed  CAS  Google Scholar 

  110. Baas, J. M., et al. (2015). Safety and efficacy of the addition of simvastatin to cetuximab in previously treated KRAS mutant metastatic colorectal cancer patients. Investigational New Drugs, 33(6), 1242–1247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zaidi, N., et al. (2013). Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research, 52(4), 585–589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of Cancer metabolism. Cell Metabolism, 23(1), 27–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kuemmerle, N. B., et al. (2011). Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Molecular Cancer Therapeutics, 10(3), 427–436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. van’t Veer, M. B., et al. (2006). The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica, 91(1), 56–63.

    Google Scholar 

  115. Hale, J. S., et al. (2014). Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells, 32(7), 1746–1758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Nath, A., et al. (2015). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Scientific Reports, 5, 14752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Guillaumond, F., et al. (2015). Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2473–2478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.

    Article  PubMed  CAS  Google Scholar 

  119. Hua, Y., et al. (2011). Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. Journal of Proteome Research, 10(8), 3513–3521.

    Article  PubMed  CAS  Google Scholar 

  120. Jung, Y. Y., Kim, H. M., & Koo, J. S. (2015). Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS One, 10(9), e0137204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Nath, A., & Chan, C. (2016). Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Scientific Reports, 6, 18669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Uray, I. P., Liang, Y., & Hyder, S. M. (2004). Estradiol down-regulates CD36 expression in human breast cancer cells. Cancer Letters, 207(1), 101–107.

    Article  PubMed  CAS  Google Scholar 

  123. Balaban, S., et al. (2015). Obesity and cancer progression: Is there a role of fatty acid metabolism? BioMed Research International, 2015, 274585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Schoors, S., et al. (2015). Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature, 520(7546), 192–197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. McDonnell, E., et al. (2016). Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Reports, 17(6), 1463–1472.

    Article  PubMed  CAS  Google Scholar 

  126. Padanad, M. S., et al. (2016). Fatty acid oxidation mediated by acyl-CoA Synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Reports, 16(6), 1614–1628.

    Article  PubMed  CAS  Google Scholar 

  127. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases, 9(3), 230–234.

    Article  PubMed  CAS  Google Scholar 

  128. Camarda, R., et al. (2016). Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature Medicine, 22(4), 427–432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Comerford, S. A., et al. (2014). Acetate dependence of tumors. Cell, 159(7), 1591–1602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Mashimo, T., et al. (2014). Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell, 159(7), 1603–1614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Qu, Q., et al. (2016). Fatty acid oxidation and carnitine palmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death & Disease, 7(5), e2226.

    Article  CAS  Google Scholar 

  132. Carrasco, P., et al. (2013). Carnitine palmitoyltransferase 1C deficiency causes motor impairment and hypoactivity. Behavioural Brain Research, 256, 291–297.

    Article  PubMed  CAS  Google Scholar 

  133. Zaugg, K., et al. (2011). Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes & Development, 25(10), 1041–1051.

    Article  CAS  Google Scholar 

  134. Wakil, S. J., & Abu-Elheiga, L. A. (2009). Fatty acid metabolism: Target for metabolic syndrome. Journal of Lipid Research, 50(Suppl), S138–S143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Du, W., et al. (2017). HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nature Communications, 8, 1769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Huang, D., et al. (2014). HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Reports, 8(6), 1930–1942.

    Article  CAS  PubMed  Google Scholar 

  137. Fragasso, G., et al. (2009). Effects of metabolic approach in diabetic patients with coronary artery disease. Current Pharmaceutical Design, 15(8), 857–862.

    Article  CAS  PubMed  Google Scholar 

  138. Holubarsch, C. J., et al. (2007). A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: The ERGO (etomoxir for the recovery of glucose oxidation) study. Clinical Science, 113(4), 205–212.

    Article  CAS  PubMed  Google Scholar 

  139. Lodhi, I. J., & Semenkovich, C. F. (2014). Peroxisomes: A nexus for lipid metabolism and cellular signaling. Cell Metabolism, 19(3), 380–392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Valença, I., et al. (2015). Localization of MCT2 at peroxisomes is associated with malignant transformation in prostate cancer. Journal of Cellular and Molecular Medicine, 19(4), 723–733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wang, Y.-X. (2010). PPARs: Diverse regulators in energy metabolism and metabolic diseases. Cell Research, 20(2), 124–137.

    Article  PubMed  CAS  Google Scholar 

  142. Bensinger, S. J., & Tontonoz, P. (2008). Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454, 470.

    Article  PubMed  CAS  Google Scholar 

  143. Peters, J. M., Shah, Y. M., & Gonzalez, F. J. (2012). The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nature Reviews. Cancer, 12(3), 181–195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Yousefi, B., et al. (2016). Peroxisome proliferator-activated receptors and their ligands in cancer drug- resistance: Opportunity or challenge. Anti-Cancer Agents in Medicinal Chemistry, 16(12), 1541–1548.

    Article  CAS  PubMed  Google Scholar 

  145. Holden, P. R., & Tugwood, J. D. (1999). Peroxisome proliferator-activated receptor alpha: Role in rodent liver cancer and species differences. Journal of Molecular Endocrinology, 22(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  146. Wang, X., et al. (2016). PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogene, 5(6), e232.

    Article  CAS  Google Scholar 

  147. Vidal-Puig, A. J., et al. (1997). Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. Journal of Clinical Investigation, 99(10), 2416–2422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Robbins, G. T., & Nie, D. (2012). PPAR gamma, bioactive lipids, and cancer progression. Frontiers in Bioscience: a Journal and Virtual Library, 17, 1816–1834.

    Article  CAS  Google Scholar 

  149. Corbet, C., & Feron, O. (2017). Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1868(1), 7–15.

    Article  CAS  Google Scholar 

  150. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bayat Mokhtari, R., et al. (2017). Combination therapy in combating cancer. Oncotarget, 8(23), 38022–38043.

    PubMed  Google Scholar 

  152. Zhao, B., Hemann, M. T., & Lauffenburger, D. A. (2014). Intratumor heterogeneity alters most effective drugs in designed combinations. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10773–10778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Benfeitas, R., et al. (2017). New challenges to study heterogeneity in cancer redox metabolism. Frontiers in Cell and Developmental Biology, 5, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Agren, R., et al. (2012). Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Computational Biology, 8(5), e1002518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Resat Cinar, PhD, MBA, for his support and Mr. Daniel C. McCaskey, JD, for his review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Park, J.K., Coffey, N.J., Limoges, A., Le, A. (2018). The Heterogeneity of Lipid Metabolism in Cancer. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_3

Download citation

Publish with us

Policies and ethics