Skip to main content

Multifunctional Plasmonic Photonic Crystal Fiber Biosensors

  • Chapter
  • First Online:
Computational Photonic Sensors

Abstract

In this chapter, two novel designs of compact surface plasmon resonance multifunctional biosensors based on nematic liquid crystal (NLC) and Alcohol mixture photonic crystal fibers (PCFs) are proposed and studied. The suggested sensors have a central hole filled either with NLC or alcohol mixture as temperature-dependent materials. Further, another large hole filled with liquid analyte has a gold nanorod as a plasmonic material. Therefore, the proposed sensors can be used for temperature and analyte refractive index sensing via the coupling between the core-guided modes in the central hole and the surface plasmon modes around the gold nanorod. The effects of the structure geometrical parameters are studied to maximize the sensitivity of the PCF biosensors. The numerical analysis is carried out using full-vectorial finite element method with perfectly matched layer boundary conditions. The reported multifunctional NLC-based sensor offers high sensitivity of 5 nm/°C and 3700 nm/RIU (refractive index unit) for temperature and analyte refractive index sensing, respectively. In addition, the alcohol mixture PCF sensor achieves high-temperature sensitivity of 13.1 nm/°C with high analyte refractive index sensitivity of 12700 nm/RIU. To the best of the authors’ knowledge, it is the first time to introduce PCF biosensor with high sensitivity for temperature and analyte refractive index sensing as well. Further, the achieved sensitivity values of the alcohol sensor are far higher than those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Expr. 14, 11616–11621 (2006)

    Article  Google Scholar 

  2. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Exp. 16, 8427–8432 (2008)

    Article  Google Scholar 

  3. M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, S.S.A. Obayya, Novel multichannel surface plasmon resonance photonic crystal fiber biosensor, SPIE Photon. Europe (2016)

    Google Scholar 

  4. N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14, 16035–16045 (2014)

    Article  Google Scholar 

  5. I. Abdulhalim, Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter. Chin. Opt. Lett. 7(8), 667–670 (2009)

    Article  Google Scholar 

  6. M.A. Ismail, N. Tamchek, M.R. Abu Hassan, K.D. Dambul, J. Selvaraj, N. Abd Rahim, S.R. Sandoghchi, F.R.M. Adikan, A fiber bragg grating—bimetal temperature sensor for solar panel inverters. Sensors 11, 8665–8673 (2009)

    Article  Google Scholar 

  7. S.-J. Qiu., Y. Ch., F. Xu, Y.Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)

    Article  Google Scholar 

  8. Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)

    Article  Google Scholar 

  9. Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, J.Q. Yao, Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photon. J. 6(3), 6801307 (2014)

    Google Scholar 

  10. D.J.J. Hu, P.P. Shum, J.L. Lim, Y. Cui, K. Milenko, Y. Wang, T. Wolinski, A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT. IEEE Photon. J. 4(5), 2010–2016 (2012)

    Article  Google Scholar 

  11. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. ElHefnawy, S.S.A. Obayya, Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal. IEEE PTL 28, 59–62 (2015)

    Article  Google Scholar 

  12. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. Robinson, J. Oliver, A novel compact photonic crystal fibre surface plasmon resonance biosensor for an aqueous environment, in Photonic Crystals—Innovative Systems, Lasers and Waveguides, Dr. Alessandro Massaro (ed.), ISBN: 978-953-51-0416-2 (2012)

    Google Scholar 

  13. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48, 1403–1410 (2012)

    Article  Google Scholar 

  14. R. Otupiri, E.K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, A. Aggoun, A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photon. J. 6(4), 1–11 (2014)

    Article  Google Scholar 

  15. W. Qin, S. Li, Y. Yao, X. Xin, J. Xue, Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Laser Eng. 58, 1–8 (2014)

    Article  Google Scholar 

  16. M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)

    Article  Google Scholar 

  17. S.I. Azzam, M.F.O. Hameed, R. Eid, A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron 48(2) (2016)

    Google Scholar 

  18. M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)

    Article  Google Scholar 

  19. S.S.A. Obayya, M.F.O. Hameed, N.F.F. Areed, Liquid crystal photonic crystal fiber sensors, in Computational Liquid Crystal Photonics. (Wiley, 2016)

    Google Scholar 

  20. N.F.F. Areed, M.F.O. Hameed, S.S.A. Obayya, Highly sensitive face-shaped label-free photonic crystal refractometer for glucose concentration monitoring. Opt. Quant. Electron. (2016)

    Google Scholar 

  21. COMSOL Multiphysics Inc. http://www.comsol.com

  22. S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, Accurate finite element modal solution of photonic crystal fibres. IEE Proc.: Optoelectron. 152(5), 241–246 (2005)

    Google Scholar 

  23. C. Kalnins, H. Ebendorff-Heidepriem, N. Spooner, T. Monro, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibers. Opt. Mat. Exp. 2, 62 (2012)

    Article  Google Scholar 

  24. M.Y. Azab, M.F.O. Hameed, S.S.A. Obayya, Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers, Opt. Quant. Electron. 49(2) (2017)

    Google Scholar 

  25. D.C. Zografopoulos, E.E. Kriezis, T.D. Tsiboukis, Photonic crystal-liquid crystal fibers for single-polarization or high birefringence guidance. Opt. Exp. 14(2), 914–925 (2006)

    Article  Google Scholar 

  26. M.F.O. Hameed, S.S.A. Obayya, K. Al-Begain, M.I. Abo el Maaty, A.M. Nasr, Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber. J. Lightwave Technol. 27(21), 4754–4762 (2009)

    Article  Google Scholar 

  27. M.F.O. Hameed, S.S.A. Obayya, K. Al Begain, A.M. Nasr, M.I. Abo El Maaty, Coupling characteristics of a soft glass nematic liquid crystal photonic crystal fibre coupler. IET Optoelectron. 3(6), 264–273 (2009)

    Article  Google Scholar 

  28. M.Y. Azab, M.F.O. Hameed, S.M. El-Hefnawy, S.S.A. Obayya, Ultra-compact liquid crystal dual core photonic crystal fibre multiplexer–demultiplexer. IET Optoelectron. 10(1), 1–7 (2015)

    Google Scholar 

  29. P. Alexandros, D.C. Zografopoulos, E. Kriezis, In-line polarization controller based on liquid-crystal photonic crystal fibers. J. Lightwave Technol. 29, 2560–2569 (2011)

    Article  Google Scholar 

  30. D. Daly, G.Clark, Optical measurement of glucose content of the aqueous humor, in Lein Applied Diagnostics (2004)

    Google Scholar 

  31. T.R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol. 17(5), 985–991 (2006)

    Article  Google Scholar 

  32. T.R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A.W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, J. Wojcik, Polarization effects in photonic liquid crystal fibers. Meas. Sci. Technol. 18(10), 3061–3069 (2007)

    Article  Google Scholar 

  33. C. Zhou, Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 288, 42–46 (2013)

    Article  Google Scholar 

  34. A.A. Rifat, G.A. Mahdiraji, D.M. Chow, Y.G. Shee, R. Ahmed, F.R.M. Adikan, Photonic crystal fiberbased surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15, 11499–11510 (2015)

    Article  Google Scholar 

  35. TIE-19: Temperature Coefficient of Refractive Index, SCHOTT Technical Information, SCHOTT North America, Inc., New York, NY, USA, July 2012, pp. 1–12

    Google Scholar 

  36. W. Peng, S. Banerji, Y.C. Kim, K.S. Booksh, Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)

    Article  Google Scholar 

  37. F. Xiao, D. Michel, G. Li, A. Xu, K. Alameh, Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. J. Lightwave Technol. 32, 3567–3571 (2014)

    Google Scholar 

  38. P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  Google Scholar 

  39. P. Falkenstein, B.L. Justus, Fused Array Preform Fabrication of Holey Optical Fibers (Google Patents, 2013)

    Google Scholar 

  40. H. Lee, Plasmonic Photonic crystal Fiber, PhD, Max Plank Institute (2012)

    Google Scholar 

  41. Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through selective filling technique. Appl. Phys. Lett. 85, 5182–5184 (2004)

    Article  Google Scholar 

  42. S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Kakarantzas, P.S.J. Russel, Splice-free interfacing of photonic crystal fibers. Opt. Lett. 30(13), 1629–1631 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azab, M.Y., Hameed, M.F.O., Nasr, A.M., Obayya, S.S.A. (2019). Multifunctional Plasmonic Photonic Crystal Fiber Biosensors. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics