Skip to main content

Creative Brain, Creative Mind, Creative Person

  • Chapter
  • First Online:
Exploring Transdisciplinarity in Art and Sciences

Abstract

Recent research on creative person has been enriched with a new perspective that brings together the study of brain functioning with the analysis of creative mind and creative behaviour. This chapter attempts to contribute to this effort, by reviewing the literature on brain activity and creativity, within the theoretical framework offered by the multivariate approach. According to this approach the multidimensional creative process is conceptualized as the interaction between person-centred factors, such as cognitive abilities, motivational drives, and personality traits, and contextual influences derived from the environment. Using this approach as a unifying theoretical framework, a coherent picture of the neurological phenomenology of creativity is provided. The viewpoint presented in this chapter should motivate investigators to reflect on the creative brain using wide theoretical lenses such as the one offered by the multivariate approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CREAM (Creativity Enhancement through Advanced brain Mapping and stimulation) funded by the European Commission under Grant Agreement No. 262022.

References

  • Abele-Brehm, A. (1992). Positive and negative mood influences on creativity: Evidence for asymmetrical effects. Polish Psychological Bulletin, 23(3), 203–221.

    Google Scholar 

  • Adobe. (2012a). Creativity and education: Why it matters (pp. 1–23). Retrieved from http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_Creativity_and_Education_Why_It_Matters_study.pdf.

  • Adobe. (2012b). State of create: Global benchmark study on attitudes and beliefs about creativity at work, school, and home (pp. 1–37). Retrieved from http://www.adobe.com/aboutadobe/pressroom/pressreleases/201204/042312AdobeGlobalCreativityStudy.html.

  • Adobe. (2016). State of create 2016 (pp. 1–50). Retrieved from http://www.adobe.com/content/dam/acom/en/max/pdfs/AdobeStateofCreate_2016_Report_Final.pdf.

  • Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165.

    Article  Google Scholar 

  • Agnoli, S., Franchin, L., Rubaltelli, E., & Corazza, G. E. (2018a). The emotionally intelligent use of attention and affective arousal under creative frustration and creative success. Personality and Individual Differences. https://doi.org/10.1016/j.paid.2018.04.041.

  • Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018b). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia.

    Google Scholar 

  • Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. UK: Hachette.

    Google Scholar 

  • Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143–156.

    Article  Google Scholar 

  • Ashby, F. G., & Isen, A. M. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529.

    Article  Google Scholar 

  • Aziz-Zadeh, L., Kaplan, J., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30, 908–916.

    Article  Google Scholar 

  • Batey, M., & Furnham, A. (2008). The relationship between measures of creativity and schizotypy. Personality and Individual Differences, 45(8), 816–821.

    Article  Google Scholar 

  • Baas, M., De Dreu, C. K., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134(6), 779.

    Article  Google Scholar 

  • Barron, F., & Harrington, D. M. (1981). Creativity, intelligence and personality. Annual Review of Psychology, 32, 439–476.

    Article  Google Scholar 

  • Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.

    Google Scholar 

  • Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95.

    Article  Google Scholar 

  • Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19(5), 830–842.

    Article  Google Scholar 

  • Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712–719.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2005). Drawing on mind’s canvas: Differences in cortical integration patterns between artists and non-artists. Human Brain Mapping, 26(1), 1–14.

    Article  Google Scholar 

  • Bechtereva, N., Korotkov, A., Pakhomov, S., Roudas, M. S., Starchenko, M., & Medvedev, S. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 11–20.

    Article  Google Scholar 

  • Benedek, M., Schickel, R. J., Jauk, E., Fink, A., & Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia, 56, 393–400.

    Article  Google Scholar 

  • Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.

    Google Scholar 

  • Bowden, E. M., & Jung-Beeman, M. (2003). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin and Review, 10, 730–737.

    Article  Google Scholar 

  • Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.

    Article  Google Scholar 

  • Carson, S. H., Higgins, D. M., & Peterson, J. B. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499–506.

    Article  Google Scholar 

  • Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980–1987.

    Article  Google Scholar 

  • Christoff, K. (2012). Undirected thought: neural determinants and correlates. Brain Research, 1428, 51–59.

    Article  Google Scholar 

  • Claridge, G., & Blakey, S. (2009). Schizotypy and affective temperament: Relationships with divergent thinking and creativity styles. Personality and Individual Differences, 46(8), 820–826.

    Article  Google Scholar 

  • Chávez-Eakle, R. A., Graff-Guerrero, A., García-Reyna, J. C., Vaugier, V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. Neuroimage, 38(3), 519–528.

    Article  Google Scholar 

  • Chiao, J. Y., & Blizinsky, K. D. (2016). Cultural neuroscience. Social Neuroscience: Biological Approaches to Social Psychology.

    Google Scholar 

  • Compton, R. J., Wirtz, D., Pajoumand, G., Claus, E., & Heller, W. (2004). Association between positive affect and attentional shifting. Cognitive Therapy and Research, 28(6), 733–744.

    Article  Google Scholar 

  • Corazza, G. E. (2016). Potential originality and effectiveness: The dynamic definition of creativity. Creativity Research Journal, 28(3), 258–267.

    Article  Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.

    Article  Google Scholar 

  • Cropley, D. H., Cropley, A. J., Kaufman, J. C., & Runco, M. A. (Eds.). (2010). The dark side of creativity. Cambridge university press.

    Google Scholar 

  • De Dreu, C. K., Baas, M., & Nijstad, B. A. (2008). Hedonic tone and activation level in the mood-creativity link: Toward a dual pathway to creativity model. Journal of Personality and Social Psychology, 94(5), 739.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.

    Article  Google Scholar 

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin and Review, 11, 1011–1026.

    Article  Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822–848.

    Article  Google Scholar 

  • Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology-Learning Memory and Cognition, 30(2), 343–352.

    Article  Google Scholar 

  • Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115, 131–139.

    Article  Google Scholar 

  • Ellamil, M., et al. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59, 1783.

    Google Scholar 

  • Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111–123.

    Article  Google Scholar 

  • Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42(1), 68–76.

    Article  Google Scholar 

  • Fink, A., Grabner, R., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30, 734–748.

    Article  Google Scholar 

  • Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82(3), 233–239.

    Article  Google Scholar 

  • Fink, A., Slamar-Halbedl, M., Unterrainer, H. F., & Weiss, E. M. (2012). Creativity: Genius, madness, or a combination of both? Psychology of Aesthetics, Creativity, and the Arts, 6(1), 11.

    Article  Google Scholar 

  • Fink, A., Weber, B., Koschutnig, K., Benedek, M., Reishofer, G., Ebner, F., et al. (2014). Creativity and schizotypy from the neuroscience perspective. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 378–387.

    Article  Google Scholar 

  • Gevensleben, H., Holl, B., Albrecht, B., Vogel, C., Schlamp, D., Kratz, O., et al. (2009). Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychological Psychiatry 50, 780–789.

    Article  Google Scholar 

  • Gonen-Yaacovi, G., et al. (2013). Rostral and caudal prefrontal contributions to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.

    Article  Google Scholar 

  • Gruberger, M., Simon, E. B., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5, 56.

    Google Scholar 

  • Gruzelier, J. H. (2014a). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience and Biobehavioral Reviews, 44, 124–141.

    Article  Google Scholar 

  • Gruzelier, J. H. (2014b). EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neuroscience and Biobehavioral Reviews, 44, 142–158.

    Article  Google Scholar 

  • Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. J., & Ros, T. (2014). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological Psychology, 95, 86–95.

    Article  Google Scholar 

  • Guez, J., Rogel, A., Getter, N., Keha, E., Cohen, T., Amor, T., et al. (2015). Influence of electroencephalography neurofeedback training on episodic memory: A randomized, sham-controlled, double-blind study. Memory, 23, 683–694.

    Article  Google Scholar 

  • Guilford, J. P. (1959). Personality. New York: McGraw-Hill

    Google Scholar 

  • Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1(1), 3–14.

    Article  Google Scholar 

  • Guilford, J. P., Christensen, P. R., Merrifield, P. R., & Wilson, R. C. (1978). Alternate uses: Manual of instructions and interpretation. Orange, CA: Sheridan Psychological Services.

    Google Scholar 

  • IBM. (2010). 2010 global CEO study: Creativity selected as most crucial factor for future success. Retrieved July 6, 2017, from https://www-03.ibm.com/press/us/en/pressrelease/31670.wss.

  • IBM. (2012). 2012 global CEO study. Retrieved from https://www-01.ibm.com/marketing/iwm/iwm/web/signup.do?source=csuite-NA&S_PKG=2012CEOStudy.

  • Isen, A. M. (2000). Some perspectives on positive affect and self-regulation. Psychological Inquiry, 11(3), 184–187.

    Google Scholar 

  • Jausovec, N. (1989). Affect in analogical transfer. Creativity Research Journal, 2(4), 255–266.

    Article  Google Scholar 

  • Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.

    Article  Google Scholar 

  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., et al. (2004). Neural activity when people solve verbal problem with insight. PLoS Biology, 2, 500–510.

    Article  Google Scholar 

  • Hao, N., Ku, Y., Liu, M., Hu, Y., Bodner, M., Grabner, R. H., et al. (2016). Reflection enhances creativity: Beneficial effects of idea evaluation on idea generation. Brain and Cognition, 103, 30–37.

    Article  Google Scholar 

  • Hosseini, S. M., Pritchard-Berman, M., Sosa, N., Ceja, A., & Kesler, S. R. (2016). Task-based neurofeedback training: A novel approach toward training executive functions. Neuroimage, 134, 153–159.

    Article  Google Scholar 

  • Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240–250.

    Article  Google Scholar 

  • Kadosh, R. C. (2013). Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Translational Neuroscience, 4(1), 20–33.

    Article  Google Scholar 

  • Kaufmann, G. (2003). Expanding the mood-creativity equation. Creativity Research Journal, 15(2–3), 131–135.

    Article  Google Scholar 

  • Kaufmann, G., & Vosburg, S. K. (1997). “Paradoxical” mood effects on creative problem-solving. Cognition and Emotion, 11(2), 151–170.

    Article  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). Para- doxical alpha synchronization in a memory task. Cognitive Brain Research, 7, 493–501.

    Article  Google Scholar 

  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition—Timing hypothesis. Brain Research Reviews, 53(1), 63–88.

    Article  Google Scholar 

  • Kounios, J., Frymiare, J., Bowden, E., Fleck, J., Subramaniam, K., Parrish, T., et al. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17, 882–891.

    Article  Google Scholar 

  • Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., et al. (2009). Neural networks 
involved in artistic creativity. Human Brain Mapping, 30.

    Google Scholar 

  • Kyaga, S., Lichtenstein, P., Boman, M., Hultman, C., Långström, N., & Landén, M. (2011). Creativity and mental disorder: Family study of 300 000 people with severe mental disorder. The British Journal of Psychiatry, 199(5), 373–379.

    Article  Google Scholar 

  • Kyaga, S., Landén, M., Boman, M., Hultman, C. M., Långström, N., & Lichtenstein, P. (2013). Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research, 47(1), 83–90.

    Article  Google Scholar 

  • Li, W., Li, X., Huang, L., Kong, X., Yang, W., Wei, D., et al. (2015). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, 10(2), 191–198.

    Article  Google Scholar 

  • Limb, C. L., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance. An fMRI study of jazz improvisation. PLoS ONE, 3, 1679.

    Article  Google Scholar 

  • Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swelt, K. E., Eagle, M. W., et al. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Nature Science Report, 2, 834.

    Article  Google Scholar 

  • Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., et al. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36(9), 3351–3372.

    Article  Google Scholar 

  • Lopez-Larraz, E., Escolano, C., & Minguez, J. (2012). Upper alpha neurofeedback training over the motor cortex increases SMR desynchronization in motor tasks. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4635–4638).

    Google Scholar 

  • Lubart, T. (1999). Componential theories of creativity. In M. A. Runcoi & S. Pritzer (Eds.), Encycopedia of creativity. New York: Academic Press.

    Google Scholar 

  • Lubart, T., Mouchiroud, C., Tordjman, S., & Zenasni, F. (2015). Psychologie de la créativité (Psychology of creativity, 2nd ed.). Paris: Colin.

    Google Scholar 

  • Lubart, T. I., Zenasni, F., & Barbot, B. (2013). Creative potential and its measurement. International Journal of Talent Development and Creativity, 1(2), 41–51.

    Google Scholar 

  • Luo, J., & Niki, K. (2002). Function of hippocampus in “insight” of problem solving. Hippocampus, 13, 316–323.

    Article  Google Scholar 

  • Martindale, C. (1999). Biological bases of creativity. In R. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7, 143–158.

    Google Scholar 

  • Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2007). An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain and Language, 100, 115–126.

    Article  Google Scholar 

  • Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.

    Article  Google Scholar 

  • Melloni, M., Lopez, V., & Ibanez, A. (2014). Empathy and contextual social cognition. Cognitive, Affective, and Behavioral Neuroscience, 14(1), 407–425.

    Article  Google Scholar 

  • Metuki, N., Sela, T., & Lavidor, M. (2012). Enhancing cognitive control components of insight problems solving by anodal tDCS of the left dorsolateral prefrontal cortex. Brain Stimulation, 5(2), 110–115.

    Article  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.

    Article  Google Scholar 

  • Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33, 1004–1023.

    Article  Google Scholar 

  • Nettle, D. (2006). The evolution of personality variation in humans and other animals. American Psychologist, 61(6), 622.

    Article  Google Scholar 

  • Nelson, B., & Rawlings, D. (2010). Relating schizotypy and personality to the phenomenology of creativity. Schizophrenia Bulletin, 36(2), 388–399.

    Article  Google Scholar 

  • Pfurtscheller, G., & Lopes da Silva, F. H. (Eds.). (1999). Event-related desynchronization. handbook of electroencephalography and clinical neurophysiology (6th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Pfurtscheller, G., Jr, Stancak, & Neuper, A. C. (1996). Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, 39–46.

    Article  Google Scholar 

  • Phillips, L. H., Bull, R., Adams, E., & Fraser, L. (2002). Positive mood and executive function: evidence from stroop and fluency tasks. Emotion, 2(1), 12.

    Article  Google Scholar 

  • Pinho, A., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 6156–6163.

    Article  Google Scholar 

  • Pressing, J. (1988). Improvisation: methods and models. In J. A. Sloboda (Ed.), Generative processes in music: The psychology of performance, improvisation, and composition (pp. 129–178). Oxford: Clarendon Press.

    Google Scholar 

  • Priori, A. (2003). Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595.

    Article  Google Scholar 

  • Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., et al. (2010). Neural correlates of the “Aha” experiences: evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397–403.

    Article  Google Scholar 

  • Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognitive Brain Research, 10.

    Google Scholar 

  • Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92–96.

    Article  Google Scholar 

  • Sandkühler S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE 3(1).

    Article  Google Scholar 

  • Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. International Journal of Psychophysiology, 57(2), 97–103.

    Article  Google Scholar 

  • Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research Journal, 23, 137–154.

    Article  Google Scholar 

  • Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology: General, 122(2), 166.

    Article  Google Scholar 

  • Sheth, B. R., Sandkuhler, S., & Bhattacharya, J. (2009). Posterior beta and anterior gamma oscillations predict cognitive insight. Journal of Cognitive Neuroscience, 21, 1269–1279.

    Article  Google Scholar 

  • Starchenko, M., Bechtereva, N., Pakhomov, S., & Medvedev (2003). Study of the brain organization of creative thinking. Human Physiology, 29, 652–653.

    Article  Google Scholar 

  • Sternberg, R. J. (1997). The concept of intelligence and its role in lifelong learning and success. American Psychologist, 52(10), 1030.

    Article  Google Scholar 

  • Sternberg, R. J. (2005). Creativity or creativities? International Journal of Human-Computer Studies, 63(4), 370–382.

    Article  Google Scholar 

  • Sternberg, R. J., & Lubart, T. (1995). Defying the crowd. Nnew York: Free Press.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1996). Investing in creativity. American Psychologist, 51(7), 677.

    Article  Google Scholar 

  • Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415–432.

    Article  Google Scholar 

  • Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., et al. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22, 2921–9.

    Article  Google Scholar 

  • van Boxtel, G. J., Denissen, A. J., Jager, M., Vernon, D., Dekker, M. K., Mihajlovic, V., et al. (2012). A novel self-guided approach to alpha activity training. International Journal of Psychophysiology, 83, 282–294.

    Article  Google Scholar 

  • van der Stigchel, S., Imants, P., & Ridderinkhof, K. R. (2011). Positive affect increases cognitive control in the antisaccade task. Brain and Cognition, 75(2), 177–181.

    Article  Google Scholar 

  • World Economic Forum. (2016). The Future of Jobs: Employment, Skills, and Workforce Strategy for the Fourth Industrial Revolution (p. 167). Retrieved from http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf.

  • Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36(7), 2703–2718.

    Article  Google Scholar 

  • Zmigrod, S., Colzato, L. S., & Hommel, B. (2015). Stimulating creativity: Modulation of convergent and divergent thinking by transcranial direct current stimulation (tDCS). Creativity Research Journal, 27(4), 353–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Lubart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mastria, S., Agnoli, S., Zanon, M., Lubart, T., Corazza, G.E. (2018). Creative Brain, Creative Mind, Creative Person. In: Kapoula, Z., Volle, E., Renoult, J., Andreatta, M. (eds) Exploring Transdisciplinarity in Art and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76054-4_1

Download citation

Publish with us

Policies and ethics