Skip to main content

On a Cahn–Hilliard–Darcy System for Tumour Growth with Solution Dependent Source Terms

  • Chapter
  • First Online:
Trends in Applications of Mathematics to Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 27))

Abstract

We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn–Hilliard–Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn–Hilliard equation through convective and source terms. Both Dirichlet and Robin boundary conditions are considered for the pressure variable, which allow for the source terms to be dependent on the solution variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Bosia, S., Conti, M., Grasselli, M.: On the Cahn–Hilliard–Brinkman system. Commun. Math. Sci. 13(6), 1541–1567 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Wise, S.M., Shenoy, V.B., Lowengrub, J.S.: A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. Int. J. Numer. Method Biomed. Eng. 30, 726–754 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Book  Google Scholar 

  5. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst. 35(6), 2423–2442 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cristini, V., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multispecies tumor growth. Nonlinearity 30(4), 1639–1658 (2017)

    Article  MathSciNet  Google Scholar 

  9. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  Google Scholar 

  10. Feng, X., Wise, S.M.: Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM J. Numer. Anal. 50, 1320–1343 (2012)

    Article  MathSciNet  Google Scholar 

  11. Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)

    Article  Google Scholar 

  12. Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete Contin. Dyn. Syst. 37(8), 4277–4308 (2017)

    Article  MathSciNet  Google Scholar 

  13. Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1(3), 318–360 (2016)

    Article  Google Scholar 

  14. Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard–Darcy system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28(2), 284–316 (2017)

    Article  Google Scholar 

  15. Garcke, H., Lam, K.F., Rocca, E.: Optimal control of treatment time in a diffuse interface model of tumor growth. Appl. Math. Optim. (2017, to be appear). DOI:10.1007/s00245–017-9414-4

    Google Scholar 

  16. Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26(6), 1095–1148 (2016)

    Article  MathSciNet  Google Scholar 

  17. Grisvard, P.: Elliptic Problems on Nonsmooth Domains. Volume Monographs and Studies in Mathematics, Vol 24. Pitman, Boston (1985)

    Google Scholar 

  18. Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Method Biomed. Eng. 28, 3–24 (2012)

    Article  MathSciNet  Google Scholar 

  19. Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259(7), 3032–3077 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lowengrub, J.S., Titi, E., Zhao, K.: Analysis of a mixture model of tumor growth. Eur. J. Appl. Math. 24, 691–734 (2013)

    Article  MathSciNet  Google Scholar 

  21. Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Models Methods Appl. Sci. 58, 723–763 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Simon, J.: Compact sets in space L p(0, T; B). Ann. Mat. Pura Appl. 146(1), 65–96 (1986)

    Article  Google Scholar 

  23. Wang, X., Wu, H.: Long-time behavior for the Hele–Shaw–Cahn–Hilliard system. Asymptot. Anal. 78(4), 217–245 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Wang, X., Zhang, Z.: Well-posedness of the Hele–Shaw–Cahn–Hilliard system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 30(3), 367–384 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Garcke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcke, H., Lam, K.F. (2018). On a Cahn–Hilliard–Darcy System for Tumour Growth with Solution Dependent Source Terms. In: Rocca, E., Stefanelli, U., Truskinovsky, L., Visintin, A. (eds) Trends in Applications of Mathematics to Mechanics. Springer INdAM Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75940-1_12

Download citation

Publish with us

Policies and ethics