Skip to main content

Early Endosome Morphology in Health and Disease

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

Early endosomes are organelles that receive macromolecules and solutes from the extracellular environment. The major function of early endosomes is to sort these cargos into recycling and degradative compartments of the cell. Degradation of the cargo involves maturation of early endosomes into late endosomes, which, after acquisition of hydrolytic enzymes, form lysosomes. Endosome maturation involves recruitment of specific proteins and lipids to the early endosomal membrane, which drives changes in endosome morphology. Defects in early endosome maturation are generally accompanied by alterations in morphology, such as increase in volume and/or number. Enlarged early endosomes have been observed in Alzheimer’s disease and Niemann Pick Disease type C, which also exhibit defects in endocytic sorting. This article discusses the mechanisms that regulate early endosome morphology and highlights the potential importance of endosome maturation in the retinal pigment epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22:461–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benmerah A (2004) Endocytosis: signaling from endocytic membranes to the nucleus. Curr Biol 14:R314–R316

    Article  CAS  PubMed  Google Scholar 

  • Bucci C, Parton RG, Mather IH et al (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715–728

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193–216

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC et al (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cataldo AM, Petanceska S, Peterhoff CM et al (2003) App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of down syndrome. J Neurosci Off J Soc Neurosc 23:6788–6792

    Article  CAS  Google Scholar 

  • Cataldo AM, Petanceska S, Terio NB et al (2004) Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 25:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Ceresa BP, Lotscher M, Schmid SL (2001) Receptor and membrane recycling can occur with unaltered efficiency despite dramatic Rab5(q79l)-induced changes in endosome geometry. J Biol Chem 276:9649–9654

    Article  CAS  PubMed  Google Scholar 

  • Christoforidis S, McBride HM, Burgoyne RD et al (1999) The Rab5 effector EEA1 is a core component of endosome docking. Nature 397:621–625

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A, Schwartz AL, Lodish HF (1983) Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors. J Cell Biochem 23:107–130

    Article  CAS  PubMed  Google Scholar 

  • Dunn KW, Maxfield FR (1992) Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J Cell Biol 117:301–310

    Article  CAS  PubMed  Google Scholar 

  • Dunn KW, McGraw TE, Maxfield FR (1989) Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol 109:3303–3314

    Article  CAS  PubMed  Google Scholar 

  • Galdzicki Z, Siarey RJ (2003) Understanding mental retardation in Down’s syndrome using trisomy 16 mouse models. Genes Brain Behav 2:167–178

    Article  CAS  PubMed  Google Scholar 

  • Gorvel JP, Chavrier P, Zerial M et al (1991) Rab5 controls early endosome fusion in vitro. Cell 64:915–925

    Article  CAS  PubMed  Google Scholar 

  • Grbovic OM, Mathews PM, Jiang Y et al (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 278:31261–31268

    Article  CAS  PubMed  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    Article  CAS  PubMed  Google Scholar 

  • Gruenberg J, Griffiths G, Howell KE (1989) Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol 108:1301–1316

    Article  CAS  PubMed  Google Scholar 

  • Hirota Y, Kuronita T, Fujita H et al (2007) A role for Rab5 activity in the biogenesis of endosomal and lysosomal compartments. Biochem Biophys Res Commun 364:40–47

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi H, Lippe R, McBride HM et al (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30:3481–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K et al (2003) Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-trans-Golgi network transport factor Rab9 effector p40. J Biol Chem 278:50863–50871

    Article  CAS  PubMed  Google Scholar 

  • Jin LW, Shie FS, Maezawa I et al (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164:975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovic M, Sharma M, Rahajeng J et al (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalin S, Hirschmann DT, Buser DP et al (2015) Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation. J Cell Sci 128:4126–4137

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Beuchat MH, Lindsay M et al (1999) Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol 1:113–118

    Article  CAS  PubMed  Google Scholar 

  • Lakkaraju A, Finnemann SC, Rodriguez-Boulan E (2007) The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A 104:11026–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippe R, Miaczynska M, Rybin V et al (2001) Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 12:2219–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattera R, Bonifacino JS (2008) Ubiquitin binding and conjugation regulate the recruitment of Rabex-5 to early endosomes. EMBO J 27:2484–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxfield FR (2014) Role of endosomes and lysosomes in human disease. Cold Spring Harb Perspect Biol 6:a016931

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  CAS  PubMed  Google Scholar 

  • Mellman I (1996) Endocytosis and molecular sorting. Annu Rev Cell Dev Biol 12:575–625

    Article  CAS  PubMed  Google Scholar 

  • Mills IG, Jones AT, Clague MJ (1998) Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr Biol 8:881–884

    Article  CAS  PubMed  Google Scholar 

  • Mills IG, Jones AT, Clague MJ (1999) Regulation of endosome fusion. Mol Membr Biol 16:73–79

    Article  CAS  PubMed  Google Scholar 

  • Murray JT, Panaretou C, Stenmark H et al (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic (Copenhagen, Denmark) 3:416–427

    Article  CAS  Google Scholar 

  • Nielsen E, Severin F, Backer JM et al (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376–382

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382

    Article  CAS  PubMed  Google Scholar 

  • Poteryaev D, Datta S, Ackema K et al (2010) Identification of the switch in early-to-late endosome transition. Cell 141:497–508

    Article  CAS  PubMed  Google Scholar 

  • Progida C, Bakke O (2016) Bidirectional traffic between the Golgi and the endosomes – machineries and regulation. J Cell Sci 129:3971–3982

    CAS  PubMed  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y et al (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  CAS  PubMed  Google Scholar 

  • Roux A, Cappello G, Cartaud J et al (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci U S A 99:5394–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T et al (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    Article  CAS  PubMed  Google Scholar 

  • Shisheva A (2008) PIKfyve: partners, significance, debates and paradoxes. Cell Biol Int 32:591–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skjeldal FM, Strunze S, Bergeland T et al (2012) The fusion of early endosomes induces molecular-motor-driven tubule formation and fission. J Cell Sci 125:1910–1919

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H, Vitale G, Ullrich O et al (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423–432

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H, Parton RG, Steele-Mortimer O et al (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan LX, Toops KA, Lakkaraju A (2016) Protective responses to sublytic complement in the retinal pigment epithelium. Proc Natl Acad Sci U S A 113:8789–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toops KA, Tan LX, Lakkaraju A (2014) A detailed three-step protocol for live imaging of intracellular traffic in polarized primary porcine RPE monolayers. Exp Eye Res 124:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toops KA, Tan LX, Jiang Z et al (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegener CS, Malerod L, Pedersen NM et al (2010) Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem Cell Biol 133:41–55

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH R01EY023299, Research to Prevent Blindness, and the Retina Research Foundation Rebecca Meyer Brown Professorship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Lakkaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, G., Lakkaraju, A. (2018). Early Endosome Morphology in Health and Disease. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_41

Download citation

Publish with us

Policies and ethics