Skip to main content

Greedy Kernel Approximation for Sparse Surrogate Modeling

  • Chapter
  • First Online:
Reduced-Order Modeling (ROM) for Simulation and Optimization

Abstract

Modern simulation scenarios frequently require multi-query or real-time responses of simulation models for statistical analysis, optimization, or process control. However, the underlying simulation models may be very time-consuming rendering the simulation task difficult or infeasible. This motivates the need for rapidly computable surrogate models. We address the case of surrogate modeling of functions from vectorial input to vectorial output spaces. These appear, for instance, in simulation of coupled models or in the case of approximating general input–output maps. We review some recent methods and theoretical results in the field of greedy kernel approximation schemes. In particular, we recall the vectorial kernel orthogonal greedy algorithm (VKOGA) for approximating vector-valued functions. We collect some recent convergence statements that provide sound foundation for these algorithms, in particular quasi-optimal convergence rates in case of kernels inducing Sobolev spaces. We provide some initial experiments that can be obtained with non-symmetric greedy kernel approximation schemes. The results indicate better stability and overall more accurate models in situations where the input data locations are not equally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA (2005)

    Book  Google Scholar 

  2. Buhmann, M.D., Dinew, S., Larsson, E.: A note on radial basis function interpolant limits. IMA J. Numer. Anal. 30(2), 543–554 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library For Support Vector Machines. Software verfgbar unter. http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

  4. De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)

    Article  MathSciNet  Google Scholar 

  5. Fasshauer, G. E.: Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary Mathematical Sciences. With 1 CD-ROM. Windows, Macintosh and UNIX. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2007)

    Google Scholar 

  6. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  Google Scholar 

  8. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat radial basis functions. Comput. Math. Appl. 47(1), 37–55 (2004)

    Article  MathSciNet  Google Scholar 

  9. Haasdonk, B.: Transformation knowledge in pattern analysis with kernel methods, distance and integration kernels. Ph.D. thesis, Albert-Ludwigs-Universität, Freiburg im Breisgau, Fakultät für Angewandte Wissenschaften, Mai. Published 2006 as ISBN-3-8322-5026-3, Shaker-Verlag, Aachen, and Online at http://www.freidok.uni-freiburg.de/volltexte/2376 (2005)

  10. Haasdonk, B.: Reduced basis methods for parametrized PDEs—a tutorial introduction for stationary and instationary problems. In: Benner, M.O.P., Cohen, A., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)

    Google Scholar 

  11. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

    Article  MathSciNet  Google Scholar 

  12. Müller, S.: Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden. Ph.D. thesis, Fakultät für Mathematik und Informatik, Georg-August-Universität Göttingen (2009)

    Google Scholar 

  13. Müller, S., Schaback, R.: A Newton basis for kernel spaces. J. Approx. Theory 161(2), 645–655 (2009)

    Article  MathSciNet  Google Scholar 

  14. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011)

    Article  MathSciNet  Google Scholar 

  15. Santin, G., Haasdonk, B.: Non-symmetric kernel greedy interpolation. University of Stuttgart, in preparation (2017)

    Google Scholar 

  16. Santin, G., Haasdonk, B.: Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dolomit. Res. Notes Approx. 10, 68–78 (2017)

    Article  MathSciNet  Google Scholar 

  17. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)

    Article  MathSciNet  Google Scholar 

  18. Schaback, R., Wendland, H.: Numerical techniques based on radial basis functions. In: Curve and Surface Fitting: Saint-Malo 1999, Vanderbilt University Press, pp. 359–374 (2000)

    Google Scholar 

  19. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press (2002)

    Google Scholar 

  20. Song, G., Riddle, J., Fasshauer, G.E., Hickernell, F.J.: Multivariate interpolation with increasingly flat radial basis functions of finite smoothness. Adv. Comput. Math. 36(3), 485–501 (2012)

    Article  MathSciNet  Google Scholar 

  21. Steinwart, I., Christmann, A.: Support Vector Machines, Information Science and Statistics. Springer, New York (2008)

    Google Scholar 

  22. Temlyakov, V.N.: Greedy approximation. Acta Numer. 17, 235–409 (2008)

    Article  MathSciNet  Google Scholar 

  23. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  24. Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dolomites Res. Notes Approx. 6:83–100 (2013). (Proceedings of DWCAA12)

    Google Scholar 

  25. Wirtz, D., Karajan, N., Haasdonk, B.: Surrogate modelling of multiscale models using kernel methods. Int. J. Numer. Methods Eng. 101(1), 1–28 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Both authors would like to thank the German Research Foundation (DFG) for financial support within the Cluster of Excellence in Simulation Technology (EXC 310) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Santin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haasdonk, B., Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In: Keiper, W., Milde, A., Volkwein, S. (eds) Reduced-Order Modeling (ROM) for Simulation and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-75319-5_2

Download citation

Publish with us

Policies and ethics