Skip to main content

Systematic Array Processing of a Decade of Global IMS Infrasound Data

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The ability of the International Monitoring System (IMS) global infrasound network to detect atmospheric explosions and other events of interest depends strongly on station-specific ambient incoherent noise and clutter (real but unwanted infrasound waves, coherent on an infrasound array). Characterization of coherent infrasound is important for quantifying the recording environment at each station and for assessing the detection probability of specific signals of interest. We systematically characterize coherent infrasound recorded by the IMS network over 10 years on 41 stations over a broad frequency range (0.01–5 Hz). This multiyear processing emphasizes continuous signals such as mountain associated waves and microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, thunder, or anthropogenic activity. We estimate the primary source regions of continuous coherent infrasound using a global cross-bearings approach. For most IMS arrays, the detection of persistent sources is controlled by the dynamics of the stratospheric wind circulation from daily to seasonal scales. Systematic and continuous characterization of multiyear array detections helps to refine knowledge of the source of ambient ocean noise and provides additional constraints on the dynamics of the middle atmosphere where data coverage is sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardhuin F, Herbers THC (2013) Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface, gravity waves infinite depth. J Fluid Mech 716:316–348. https://doi.org/10.1017/jfm.2012.548

    Article  Google Scholar 

  • Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res 118. https://doi.org/10.1002/jgrd.50833

    Google Scholar 

  • Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res Atmos 119. https://doi.org/10.1002/2014jd021632

    Google Scholar 

  • Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887

    Google Scholar 

  • Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Infrasound monitoring for atmospheric studies, chapter monitoring the earth’s atmosphere with the global IMS infrasound network. Springer, Dordrecht, pp 77–118. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Campus P, Christie DR (2010) Infrasound monitoring for atmospheric studies. In: (eds) Le Pichon A, Blanc E, Hauchecorne A, chapter Worldwide observations of infrasonic waves. Springer, Dordrecht, pp 195–234. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location—the PMCC method. Geophys Res Lett 22:1021–1024

    Article  Google Scholar 

  • Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505. https://doi.org/10.1002/jgrd.50125

    Article  Google Scholar 

  • Christie DR, Campus P (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Chapter the IMS infrasound network: design and establishment of infrasound stations. Springer, Dordrecht, pp 29–76. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Chunchuzov IP (1993) On the possible generation mechanism of non-stationary mountain waves in the atmosphere. J Atmos Sci 51:2196–2206

    Article  Google Scholar 

  • Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590

    Google Scholar 

  • de Groot-Hedlin C, Hedlin M (2019) Detection of infrasound signals and sources using a dense seismic network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 669–699

    Google Scholar 

  • Donn WL (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78:4482–4488

    Article  Google Scholar 

  • Drob D (2019) Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 485–508

    Google Scholar 

  • Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108:D21. https://doi.org/10.1029/2002JD003307

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés M (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) chapter inversion of infrasound signals for passive atmospheric remote sensing, pp 701–731. Springer, Dordrecht. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Evers LG, Siegmund P (2009) The infrasonic signature of the 2009 major Sudden Stratospheric Warming. Geophys Res Lett 36:L23808. https://doi.org/10.1029/2009GL041323

    Article  Google Scholar 

  • Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31. https://doi.org/10.1029/2004gl020696

  • Garcés MA (2013) On infrasound standard, part 1: time, frequency, and energy scaling, vol 2, pp 13–35. http://dx.doi.org/10.4236/inframatics.2013.22002

  • Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18116. https://doi.org/10.1029/2010JD014017

    Article  Google Scholar 

  • Green DN, Le Pichon A, Ceranna L, Evers L (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A, Chapter ground truth events: assessing the capability of infrasound networks using high resolution data analyses, Springer, Dordrecht, pp 599–625. ISBN:978-1-4020-9507-8

    Google Scholar 

  • Green DN, Matoza RS, Vergoz J, Le Pichon A (2012) Infrasonic propagation from the 2010 Eyjafjallajökull eruption: investigating the influence of stratospheric solar tides. J Geophys Res 117:D21202. https://doi.org/10.1029/2012JD017988

    Article  Google Scholar 

  • Kim YJ, Arakawa A (1993) Improvement of orographic gravity waves parameterization using a mesoscale gravity wave model. J Atmos Sci 52:1902–1975

    Google Scholar 

  • Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza RS, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190. https://doi.org/10.1111/j.1365-246x.2012.05518.x

    Article  Google Scholar 

  • Landès M, Ceranna L, Le Pichon A, Matoza R (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res. https://doi.org/10.1029/2011jd016684

    Article  Google Scholar 

  • Landès M, Le Pichon A, Shapiro N, Hillers G, Campillo M (2014) Explaining global patterns of microbarom observations with wave action models. Geophys J Int 2014(199):1328–1337. https://doi.org/10.1093/gji/ggu324

    Article  Google Scholar 

  • Larson RJ, Craine LB, Thomas JE, Wilson CR (1971) Correlation of winds and geographic features with production of certain infrasonic signals in the atmosphere. Geophys J R Astron Soc 26:201–214

    Article  Google Scholar 

  • Le Pichon A, Matoza R, Brachet N, Cansi Y (2010) Recent enhancements of the PMCC infrasound signal detector. Inframatics Newslett 26:5–8. http://www.inframatics.org

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121. https://doi.org/10.1029/2011JD016670

    Article  Google Scholar 

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J Geophys Res 120. https://doi.org/10.1002/2015jd023273

    Google Scholar 

  • Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910

    Google Scholar 

  • Longuet-Higgins MS (1950) A theory of the origin of microseisms. R Soc Lond Phil Trans A 243:1–35

    Article  Google Scholar 

  • Marty J (2019) The IMS Infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matoza R, Landès M, Le Pichon A, Ceranna L, Brown D (2013) Coherent ambient infrasound recorded by the International Monitoring System. Geophys Res Lett 40. https://doi.org/10.1029/2012gl054329

    Article  Google Scholar 

  • Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Solid Earth 122:2946–2971. https://doi.org/10.1002/2016JB013356

    Article  Google Scholar 

  • Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077

    Google Scholar 

  • McFarlane MA (1987) The effect of orographically excited gravity waves drag on the general circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1775–1800

    Article  Google Scholar 

  • Mialle P, Brown D, Arora N (2019) Advances in operational processing at the international data centre In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248

    Google Scholar 

  • Schimmel M, Stutzmann E, Ardhuin F, Gallart J (2011) Polarized Earth’s ambient microseismic noise. Geochem Geophys Geosyst 12:Q07014. https://doi.org/10.1029/2011GC003661

    Article  Google Scholar 

  • Silber E, Brown P (2019) Infrasound monitoring as a tool to characterize impacting near-earth objects (NEOs). In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 939–986

    Google Scholar 

  • Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119. https://doi.org/10.1002/2014jd021905

    Google Scholar 

  • Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res Atmos 121. https://doi.org/10.1002/2015jd024251

    Google Scholar 

  • Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755

    Google Scholar 

  • Smith RB, Woods K, Jensen J, Cooper WA, Doyle JD, Jiang Q, Grubisic V (2007) Mountain waves entering the stratosphere. J Atmos Sci 65. https://doi.org/10.1175/2007JAS2598.1

    Article  Google Scholar 

  • Stehly L, Campillo M, Shapiro NM (2006) A study of the noise from its long-range correlation properties. J Geophys Res 111:B10306. https://doi.org/10.1029/2005JB004237

    Article  Google Scholar 

  • Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:2651–2664

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Wilson CR, Szuberla CA, Olson JV (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Chapter high-latitude observations of infrasound from Alaska and Antarctica: mountains associated waves and geomagnetic/auroral infrasonic signals. Springer, Dordrecht, pp 415–451. ISBN:978-1-4020-9507-8

    Google Scholar 

Download references

Acknowledgements

We thank the CTBTO and station operators for guaranteeing the high quality of the infrasound data. This work was performed during the course of the ARISE design study (http://arise-project.eu), funded under the H2020 Framework Programme of the European Union (grant 653980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Ceranna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ceranna, L., Matoza, R., Hupe, P., Le Pichon, A., Landès, M. (2019). Systematic Array Processing of a Decade of Global IMS Infrasound Data. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_13

Download citation

Publish with us

Policies and ethics