Skip to main content

Heat Shock Proteins and Pesticide Stress

  • Chapter
  • First Online:
Regulation of Heat Shock Protein Responses

Part of the book series: Heat Shock Proteins ((HESP,volume 13))

Abstract

Heat shock proteins (HSP) are highly conserved bio-molecules found almost in all taxa from protozoa to higher vertebrates. HSP mainly function as chaperones to protect proteins from unfolding, aggregation and destruction. They also help to cope with a range of environmental stresses. Pesticides in majority are synthetic chemicals used in agricultural fields to kill pests, but when ingested by non-target organisms, they generate reactive oxygen species and oxidative stress (OS). OS catalyzes unfolding and aggregation of native proteins. In response, HSP are synthesized within cells and block protein degradation. Therefore, HSP are produced to counteract pesticide stress and hence they are designated as potent biomarkers of OS. Several techniques are available that can monitor HSP level following pesticide insult. Reporter gene assay (HSP70-LacZ or HSP70-GFP) is a common practice and it provides qualitative information. Northern and Western Blot analysis presents quantitative measures of HSP at both mRNA and protein levels. Therefore, HSP constitute a part of cell protection machinery as well as they belong to first tier of biomarkers considered in risk assessment of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait-Aissa, S., Pandard, P., Magaud, H., Arrigo, A. P., Thyband, E., & Porcher, J. M. (2003). Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixture: Comparison with chemical analysis and ecotoxicity tests. Ecotoxicology and Environmental Safety, 54, 92–104.

    Article  CAS  Google Scholar 

  • Alavanja, M. C. R., Hoppin, J. A., & Kamel, F. (2004). Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annual Review of Public Health, 25, 155–197.

    Article  Google Scholar 

  • Bagchi, D., Bhattacharya, G., & Stohs, S. J. (1996). In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides. Toxicology, 112, 57–68.

    Article  CAS  Google Scholar 

  • Ceyhun, S. B., Senturk, M., Ekinci, D., Erdogan, O., Erdogan, O., Ciltas, A., & Koceman, E. M. (2010). Deltamethrin attenuates antioxidant defense system and induces the expression of heat shock protein 70 in rainbow trout. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 152, 215–233.

    Google Scholar 

  • Chan, J. Y. H., Cheng, H. L., Chou, J. L., Li, J., Faith, C. H., Dai, K. Y., Chan, S. H. H., & Chang, A. Y. W. (2007). Heat shock protein 60 or 70 Activates Nitric-oxide Synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. The Journal of Biological Chemistry, 282, 4585–4600.

    Article  CAS  Google Scholar 

  • Doganlar, O., & Doganlar, Z. B. (2015). Responses of antioxidant enzymes and heat shock proteins in Drosophila to treatment with a pesticide mixture. Archives of Biological Sciences Belgrade, 67(3), 869–876.

    Article  Google Scholar 

  • Dutta, M., Rajak, P., Khatun, S., & Roy, S. (2017). Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. Chemosphere, 166, 255–266.

    Article  CAS  Google Scholar 

  • Eder, K. J., Leutenegger, C. M., Kohler, H., & Werner, I. (2009). Effects of neurotoxic insecticides on heat-shock proteins and cytokine transcription in Chinook salmon (Oncorhynchus tshawytscha). Ecotoxicology and Environmental Safety, 72, 182–190.

    Article  CAS  Google Scholar 

  • Garrido, C., & Solary, E. (2003). A role of HSP in apoptosis through “protein triage”? Cell Death and Differentiation, 10, 619–620.

    Article  CAS  Google Scholar 

  • Gorman, A. M., Heavey, B., Creagh, E., Cotter, T. G., & Samali, A. (1999). Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Letters, 445, 98–102.

    Article  CAS  Google Scholar 

  • Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T., & Egeblad, M. (1998). Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. The EMBO Journal, 17, 6124–3614.

    Article  CAS  Google Scholar 

  • Katalinić, M., Miš, K., Pirkmajer, S., Grubič, Z., Kovarik, Z., & Marš, T. (2013). The cholinergic and non-cholinergic effects of organophosphates and oximes in cultured human myoblasts. Chemico-Biological Interactions, 25, 144–148.

    Article  Google Scholar 

  • Khatun, S., Rajak, P., Dutta, M., & Roy, S. (2017). Sodium fluoride adversely affects ovarian development and reproduction in Drosophila melanogaster. Chemosphere, 186, 51e61.

    Article  Google Scholar 

  • Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Hartl, F. U. (2013). Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry, 82, 323–355.

    Article  CAS  Google Scholar 

  • Kumar, V., Ara, G., Afzal, M., & Siddique, Y. H. (2011). Effect of methyl methanesulfonate on hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Interdisciplinary Toxicology, 4, 159–165.

    Article  CAS  Google Scholar 

  • Li, P. F., Dietz, R., & Von Harsdorf, R. (1999). p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. The EMBO Journal, 18, 6027–6036.

    Article  CAS  Google Scholar 

  • Lindquist, L. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.

    Article  CAS  Google Scholar 

  • Liu, H. H., He, J. Y., Chi, C. F., & Shao, J. (2014). Differential HSP70 expression in Mytilus coruscus under various stressors. Gene, 543, 166–117.

    Article  CAS  Google Scholar 

  • Luo, L., Ke, C., Guo, X., Shi, B., & Huang, M. (2014). Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary. Fish & Shellfish Immunology, 38, 318–329.

    Article  CAS  Google Scholar 

  • Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International. https://doi.org/10.1155/2014/564136 , 2014, 1.

    Google Scholar 

  • Matsumori, Y., Hong, S. M., Aoyama, K., Fan, Y., Kayama, T., Sheldon, R. A., et al. (2005). Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. Journal of Cerebral Blood Flow and Metabolism, 25, 899–910.

    Article  CAS  Google Scholar 

  • Mehlen, P., Schulze-Osthoff, K., & Arrigo, A. P. (1996). Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. The Journal of Biological Chemistry, 271, 16510–16514.

    Article  CAS  Google Scholar 

  • Miller, G. T. (2004). Sustaining the Earth: An integrated approach (pp. 211–216). Thomson/Brooks/Cole.

    Google Scholar 

  • Rajak, P., Dutta, M., Khatun, S., Mandi, M., & Roy, S. (2017). Exploring hazards of acute exposure of Acephate in Drosophila melanogaster and search for l-ascorbic acid mediated defense in it. Journal of Hazardous Materials, 321, 690–702.

    Article  CAS  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Sahebzadeh, N., & Lau, W. H. (2017). Expression of heat-shock protein genes in Apis melliferameda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). European Journal of Entomology, 114, 195–202.

    Article  Google Scholar 

  • Sarkar, S., Podder, S., & Roy, S. (2015). Flubendiamide-induced HSP70 expression in transgenic Drosophila melanogaster (hsp70-lacZ). Current Science, 108, 2044–2050.

    Google Scholar 

  • Shukla, G., Kumar, A., Bhanti, M., Joseph, P. E. and Taneja, A. (2006). Organochlorine pesticide contamination of ground water in the city of Hyderabad. Environment International 32, 244–247.

    Article  CAS  Google Scholar 

  • Steinmetz, U. N., & Resing, L. (1997). Heat shock protein induction by certain chemical stressors is correlated with their cytotoxicity, lipophilicity and protein denaturing capacity. Toxicology, 123, 185–195.

    Article  Google Scholar 

  • Stringham, E. G., & Candido, P. M. (1994). Transgenic hsp16 lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environmental Toxicology and Chemistry, (8), 1211–1220.

    Article  CAS  Google Scholar 

  • Tissières, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398.

    Article  Google Scholar 

  • Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M., & Hartl, F. U. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology, 2, a004390.

    Article  CAS  Google Scholar 

  • Yuan, X., Zhou, W. W., Zhou, Y., Liu, S., Lu, F., Yang, M. F., Cheng, J., Gurr, G. M., & Zhu, Z. R. (2014). Composition and expression of heat shock proteins in an invasive pest, the rice water weevil (Coleoptera: Curculionidae). Florida Entomologist, 97(2), 611–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors show deep sense of gratitude towards the Head, Department of Zoology (DST-FIST, UGC-DRS sponsored), The University of Burdwan for infrastructural facilities. Continuous support obtained from other members of our research group during writing this book chapter is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, P., Roy, S. (2018). Heat Shock Proteins and Pesticide Stress. In: Asea, A., Kaur, P. (eds) Regulation of Heat Shock Protein Responses. Heat Shock Proteins, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-74715-6_2

Download citation

Publish with us

Policies and ethics