Skip to main content

Review of Microinjection Systems

  • Chapter
  • First Online:
Micromachines for Biological Micromanipulation

Abstract

Cell microinjection plays an important role in genetics, transgenics, molecular biology, drug discovery, reproductive studies, and other biomedical fields. Robotic cell microinjection has been popularly applied due to its high precision, high repeatability, and high throughput. In this chapter, the state-of-the-art research on microinjection of both adherent cells and suspended cells with microforce-sensing techniques is reviewed. The challenges and promising methods in automating the cell microinjection process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ais2.com/.

  2. 2.

    http://www.eppendorf.com.

  3. 3.

    http://www.narishige-group.com/.

References

  1. Aguado, B.A., Mulyasasmita, W., Su, J., Lampe, K.J., Heilshorn, S.C.: Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18(7–8), 806–815 (2011)

    Google Scholar 

  2. Ammi, M., Ferreira, A.: Realistic visual and haptic rendering for biological-cell injection. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 918–923 (2005)

    Google Scholar 

  3. Ammi, M., Ferreira, A.: Biological cell injection visual and haptic interface. Adv. Robot. 20(3), 283–304 (2006)

    Article  Google Scholar 

  4. Ammi, M., Ladjal, H., Ferreira, A.: Evaluation of 3D pseudo-haptic rendering using vision for cell micromanipulation. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2115–2120 (2006)

    Google Scholar 

  5. Asgari, M., Abdi, H., Lim, C.P., Nahavandi, S.: Formulation and simulation of a 3D mechanical model of embryos for microinjection. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2219–2224 (2013)

    Google Scholar 

  6. Banga, A.K., Bose, S., Ghosh, T.K.: Iontophoresis and electroporation: comparisons and contrasts. Int. J. Pharm. 179(1), 1–19 (1999)

    Article  Google Scholar 

  7. Beutel, T., Ferreira, N., Balck, A., Leester-Schadel, M., Buttgenbach, S.: Cell manipulation system based on a self-calibrating silicon micro force sensor providing capillary status monitoring. IEEE Sens. J. 12(10), 3075–3081 (2012)

    Article  Google Scholar 

  8. Beyeler, F., Muntwyler, S., Nelson, B.J.: A six-axis mems force-torque sensor with micro-newton and nano-newtonmeter resolution. J. Microelectromech. Syst. 18(2), 433–441 (2009)

    Article  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  10. Carthew, R.W.: Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 13(2), 244–248 (2001)

    Article  Google Scholar 

  11. Chen, Z., Shen, Y., Xi, N., Tan, X.: Integrated sensing for ionic polymer-metal composite actuators using PVDF thin films. Smart Mater. Struct. 16(2), S262 (2007)

    Article  Google Scholar 

  12. Choi, Y., Love, C., Chung, Y., Varner, D., Westhusin, M., Burghardt, R., Hinrichs, K.: Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod. 67(2), 561–567 (2002)

    Article  Google Scholar 

  13. Davis, L.S.: A survey of edge detection techniques. Comput. Graph. Image Process. 4(3), 248–270 (1975)

    Article  Google Scholar 

  14. Desmaele, D., Boukallel, M., Regnier, S.: A planar structure sensitive to out-of-plane forces for the force-controlled injection of suspended and adherent cells. In: Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 8420–8423 (2011)

    Google Scholar 

  15. Fauver, M.E., Dunaway, D.L., Lilienfeld, D.H., Craighead, H.G., Pollack, G.H.: Microfabricated cantilevers for measurement of subcellular and molecular forces. IEEE Trans. Biomed. Eng. 45(7), 891–898 (1998)

    Article  Google Scholar 

  16. Fujisato, T., Abe, S., Tsuji, T., Sada, M., Miyawaki, F., Ohba, K.: The development of an OVA holding device made of microporous glass plate for genetic engineering. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 2981–2982 (1998)

    Google Scholar 

  17. Fung, C.K., Elhajj, I., Li, W.J., Xi, N.: A 2-D PVDF force sensing system for micro-manipulation and micro-assembly. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA’02), vol. 2, pp. 1489–1494 (2002)

    Google Scholar 

  18. Gauthier, M., Nourine, M.: Capillary force disturbances on a partially submerged cylindrical micromanipulator. IEEE Trans. Rob. 23(3), 600–604 (2007)

    Article  Google Scholar 

  19. Ghanbari, A., Horan, B., Nahavandi, S., Chen, X., Wang, W.: Haptic microrobotic cell injection system. IEEE Syst. J. 8(2), 371–383 (2014)

    Article  Google Scholar 

  20. Greminger, M.A., Nelson, B.J.: Vision-based force measurement. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 290–298 (2004)

    Article  Google Scholar 

  21. Huang, H., Sun, D., Mills, J.K., Li, W.J., Cheng, S.H.: Visual-based impedance control of out-of-plane cell injection systems. IEEE Trans. Autom. Sci. Eng. 6(3), 565–571 (2009)

    Article  Google Scholar 

  22. Huang, H., Sun, D., Su, H., Mills, J.K.: Force sensing and control in robot-assisted suspended cell injection system. Adv. Rob. Virtual Reality 61–88 (2012)

    Google Scholar 

  23. Huang, H.B., Sun, D., Mills, J.K., Cheng, S.H.: Robotic cell injection system with position and force control: toward automatic batch biomanipulation. IEEE Trans. Rob. 25(3), 727–737 (2009)

    Article  Google Scholar 

  24. Huang, T., Kimura, Y., Yanagimachi, R.: The use of piezo micromanipulation for intracytoplasmic sperm injection of human oocytes. J. Assist. Reprod. Genet. 13(4), 320–328 (1996)

    Article  Google Scholar 

  25. Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59(1), 575–599 (1997)

    Article  Google Scholar 

  26. Juelicher, F., Kruse, K., Prost, J., Joanny, J.F.: Active behavior of the cytoskeleton. Phys. Rep. 449(1), 3–28 (2007)

    Article  MathSciNet  Google Scholar 

  27. Jumpertz, R., Hart, A., Ohlsson, O., Saurenbach, F., Schelten, J.: Piezoresistive sensors on AFM cantilevers with atomic resolution. Microelectron. Eng. 41, 441–444 (1998)

    Article  Google Scholar 

  28. Kallio, P., Kuncova-Kallio, J.: Capillary pressure microinjection of living adherent cells: challenges in automation. J. Micromechatronics 3(3), 189–220 (2006)

    Article  Google Scholar 

  29. Karimirad, F., Chauhan, S., Shirinzadeh, B.: Vision-based force measurement using neural networks for biological cell microinjection. J. Biomech. 47(5), 1157–1163 (2014)

    Article  Google Scholar 

  30. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  31. Kim, D.H., Kim, B., Yun, S., Kwon, S.: Cellular force measurement for force reflected biomanipulation. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), vol. 3, pp. 2412–2417 (2004)

    Google Scholar 

  32. Kim, D.H., Sun, Y., Yun, S., Kim, B., Hwang, C.N., Lee, S.H., Nelson, B.J.: Mechanical property characterization of the zebrafish embryo chorion. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS’04), vol. 2, pp. 5061–5064 (2004)

    Google Scholar 

  33. Kim, J., Janabi-Sharifi, F., Kim, J.: Haptic feedback based on physically based modeling for cellular manipulation systems. In: Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 661–667 (2008)

    Google Scholar 

  34. Kim, J., Janabi-Sharifi, F., Kim, J.: A haptic interaction method using visual information and physically based modeling. IEEE/ASME Trans. Mechatron. 15(4), 636–645 (2010)

    Article  Google Scholar 

  35. Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 18(5), 055013 (2008)

    Article  Google Scholar 

  36. Kimura, Y., Yanagimachi, R.: Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52(4), 709–720 (1995)

    Article  Google Scholar 

  37. Kuncova, J., Kallio, P.: Challenges in capillary pressure microinjection. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS’04), vol. 2, pp. 4998–5001 (2004)

    Google Scholar 

  38. Kuncova-Kallio, J.: Calibration of a capillary pressure microinjection and its implementation within a micromanipulator. M.Sc. thesis, Tampere University of Technology (2002)

    Google Scholar 

  39. Ladjal, H., Hanus, J.L., Ferreira, A.: Micro-to-nano biomechanical modeling for assisted biological cell injection. IEEE Trans. Biomed. Eng. 60(9), 2461–2471 (2013)

    Article  Google Scholar 

  40. Langenau, D.M., Keefe, M.D., Storer, N.Y., Guyon, J.R., Kutok, J.L., Le, X., Goessling, W., Neuberg, D.S., Kunkel, L.M., Zon, L.I.: Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 21(11), 1382–1395 (2007)

    Article  Google Scholar 

  41. Leymarie, F., Levine, M.D.: Tracking deformable objects in the plane using an active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 617–634 (1993)

    Article  Google Scholar 

  42. Li, W.J., Xi, N.: Novel micro gripping, probing, and sensing devices for single-cell surgery. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS’04), vol. 1, pp. 2591–2594 (2004)

    Google Scholar 

  43. Li, X., Zong, G., Bi, S.: Development of global vision system for biological automatic micro-manipulation system. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 127–132 (2001)

    Google Scholar 

  44. Li, X., Zong, G., Bi, S., Zhao, W.: Automatic micromanipulating system for biological applications with visual servo control. J. Micromechatron. 1(4), 345–363 (2001)

    Article  Google Scholar 

  45. Lim, C., Zhou, E., Quek, S.: Mechanical models for living cells—a review. J. Biomech. 39(2), 195–216 (2006)

    Article  Google Scholar 

  46. Lin, M.T., Pulkkinen, L., Uitto, J., Yoon, K.: The gene gun: current applications in cutaneous gene therapy. Int. J. Dermatol. 39(3), 161–170 (2000)

    Article  Google Scholar 

  47. Liu, X., Kim, K., Zhang, Y., Sun, Y.: Nanonewton force sensing and control in microrobotic cell manipulation. Int. J. Rob. Res. 28(8), 1065–1076 (2009)

    Article  Google Scholar 

  48. Liu, X., Sun, Y.: Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection. Biomed. Microdevices 11(6), 1169 (2009)

    Article  Google Scholar 

  49. Liu, X., Sun, Y., Wang, W., Lansdorp, B.M.: Vision-based cellular force measurement using an elastic microfabricated device. J. Micromech. Microeng. 17(7), 1281 (2007)

    Article  Google Scholar 

  50. Loh, O., Lam, R., Chen, M., Moldovan, N., Huang, H., Ho, D., Espinosa, H.D.: Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. Small 5(14), 1667–1674 (2009)

    Article  Google Scholar 

  51. Lu, Z., Chen, P.C., Lin, W.: Force sensing and control in micromanipulation. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 36(6), 713–724 (2006)

    Article  Google Scholar 

  52. Lu, Z., Chen, P.C., Nam, J., Ge, R., Lin, W.: A micromanipulation system with dynamic force-feedback for automatic batch microinjection. J. Micromech. Microeng. 17(2), 314 (2007)

    Article  Google Scholar 

  53. Lukkari, M., Kallio, P.: Multi-purpose impedance-based measurement system to automate microinjection of adherent cells. In: Proceedings of the 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automatio (CIRA 2005), pp. 701–706 (2005)

    Google Scholar 

  54. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  55. Maruyama, H., Masuda, T., Liu, H., Arai, F.: Selective and rapid cell injection of fluorescence sensor encapsulated in liposome using optical control of zeta potential and local mechanical stimulus by optical tweezers. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 816–821 (2014)

    Google Scholar 

  56. Matsuoka, H., Komazaki, T., Mukai, Y., Shibusawa, M., Akane, H., Chaki, A., Uetake, N., Saito, M.: High throughput easy microinjection with a single-cell manipulation supporting robot. J. Biotechnol. 116(2), 185–194 (2005)

    Article  Google Scholar 

  57. Matsuoka, H., Shimoda, S., Miwa, Y., Saito, M.: Automatic positioning of a microinjector in mouse es cells and rice protoplasts. Bioelectrochemistry 69(2), 187–192 (2006)

    Article  Google Scholar 

  58. Mehrbod, M., Mofrad, M.R.: On the significance of microtubule flexural behavior in cytoskeletal mechanics. PloS One 6(10), e25627 (2011)

    Article  Google Scholar 

  59. Meister, A., Gabi, M., Behr, P., Studer, P., Voros, J., Niedermann, P., Bitterli, J., Polesel-Maris, J., Liley, M., Heinzelmann, H., et al.: FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9(6), 2501–2507 (2009)

    Article  Google Scholar 

  60. Meyer, G., Amer, N.M.: Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53(12), 1045–1047 (1988)

    Article  Google Scholar 

  61. Minaschek, G., Bereiter-Hahn, J., Bertholdt, G.: Quantitation of the volume of liquid injected into cells by means of pressure. Exp. Cell Res. 183(2), 434–442 (1989)

    Article  Google Scholar 

  62. Muntwyler, S., Beyeler, F., Nelson, B.: Three-axis micro-force sensor with sub-micro-Newton measurement uncertainty and tunable force range. J. Micromech. Microeng. 20(2), 025011 (2009)

    Article  Google Scholar 

  63. Muraoka, O., Shimizu, T., Yabe, T., Nojima, H., Bae, Y.K., Hashimoto, H., Hibi, M.: Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nat. Cell Biol. 8(4), 329 (2006)

    Article  Google Scholar 

  64. Murphy, D.B.: Fundamentals of light microscopy and electronic imaging. Wiley, New York (2002)

    Google Scholar 

  65. Nakayama, T., Fujiwara, H., Tastumi, K., Fujita, K., Higuchi, T., Mori, T.: A new assisted hatching technique using a piezo-micromanipulator. Fertil. Steril. 69(4), 784–788 (1998)

    Article  Google Scholar 

  66. Part, S.: Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Contr. 107, 17 (1985)

    Article  Google Scholar 

  67. Permana, S., Grant, E., Walker, G.M., Yoder, J.A.: A review of automated microinjection systems for single cells in the embryogenesis stage. IEEE/ASME Trans. Mechatron. 21(5), 2391–2404 (2016)

    Article  Google Scholar 

  68. Pillarisetti, A., Anjum, W., Desai, J.P., Friedman, G., Brooks, A.D.: Force feedback interface for cell injection. In: Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 391–400 (2005)

    Google Scholar 

  69. Pillarisetti, A., Pekarev, M., Brooks, A.D., Desai, J.P.: Evaluating the effect of force feedback in cell injection. IEEE Trans. Autom. Sci. Eng. 4(3), 322 (2007)

    Article  Google Scholar 

  70. Poleo, G.A., Denniston, R.S., Reggio, B.C., Godke, R.A., Tiersch, T.R.: Fertilization of eggs of zebrafish, Danio rerio, by intracytoplasmic sperm injection. Biol. Reprod. 65(3), 961–966 (2001)

    Article  Google Scholar 

  71. Rols, M.P.: Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim. Biophys. Acta (BBA) Biomembr. 1758(3), 423–428 (2006)

    Google Scholar 

  72. Rubin, G.M., Lewis, E.B.: A brief history of drosophila’s contributions to genome research. Science 287(5461), 2216–2218 (2000)

    Article  Google Scholar 

  73. Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W., et al.: Comparative genomics of the eukaryotes. Science 287(5461), 2204–2215 (2000)

    Article  Google Scholar 

  74. Saffrich, R., Pepperkok, R.: Embo practical course–microinjection and detection of probes in cells (2001). http://www.bio.net/mm/cellbiol/1998-March/008361.html

  75. Scherp, P., Hasenstein, K.: Microinjection—a tool to study gravitropism. Adv. Space Res. 31(10), 2221–2227 (2003)

    Article  Google Scholar 

  76. Shen, Y., Wejinya, U., Xi, N., Pomeroy, C.A.: Force measurement and mechanical characterization of living drosophila embryos for human medical study. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 221(2), 99–112 (2007)

    Article  Google Scholar 

  77. Shen, Y., Winder, E., Xi, N., Pomeroy, C.A., Wejinya, U.C.: Closed-loop optimal control-enabled piezoelectric microforce sensors. IEEE/ASME Trans. Mechatron. 11(4), 420–427 (2006)

    Article  Google Scholar 

  78. Shim, J.H., Cho, S.Y., Cha, D.H.: Vision-guided micromanipulation system for biomedical application. Proc. SPIE 5604, 98–107 (2004)

    Article  Google Scholar 

  79. Shulev, A., Roussev, I., Kostadinov, K.: Force sensor for cell injection and characterization. In: Proceedings of the 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 335–338 (2012)

    Google Scholar 

  80. Stavrov, V.T., Shulev, A.A., Hardalov, C.M., Todorov, V.M., Roussev, I.R.: All-silicon microforce sensor for bio applications. In: Proceedings of SPIE, vol. 8763, p. 87630Y (2013)

    Google Scholar 

  81. Sun, Y., Fry, S.N., Potasek, D., Bell, D.J., Nelson, B.J.: Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. J. Microelectromech. Syst. 14(1), 4–11 (2005)

    Article  Google Scholar 

  82. Sun, Y., Nelson, B.J.: Biological cell injection using an autonomous microrobotic system. Int. J. Rob. Res. 21(10–11), 861–868 (2002)

    Article  Google Scholar 

  83. Sun, Y., Nelson, B.J.: Mems for cellular force measurements and molecular detection. Int. J. Inf. Acquisition 1(01), 23–32 (2004)

    Article  Google Scholar 

  84. Sun, Y., Nelson, B.J.: Mems capacitive force sensors for cellular and flight biomechanics. Biomed. Mater. 2(1), S16 (2007)

    Article  Google Scholar 

  85. Sun, Y., Nelson, B.J., Potasek, D.P., Enikov, E.: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. J. Micromech. Microeng. 12(6), 832 (2002)

    Article  Google Scholar 

  86. Sun, Y., Wan, K.T., Roberts, K.P., Bischof, J.C., Nelson, B.J.: Mechanical property characterization of mouse zona pellucida. IEEE Trans. Nanobiosci. 2(4), 279–286 (2003)

    Article  Google Scholar 

  87. Sun, Z., Hao, L., Chen, W., Li, Z.: Robotic cell injection force control based on static PVDF sensor and fuzzy-PID control method. Int. J. Appl. Electromagnet. Mech. 41(1), 73–86 (2013)

    Google Scholar 

  88. Sundaram, J., Mellein, B.R., Mitragotri, S.: An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys. J. 84(5), 3087–3101 (2003)

    Article  Google Scholar 

  89. Tan, Y., Sun, D., Huang, W., Cheng, S.H.: Mechanical modeling of biological cells in microinjection. IEEE Trans. Nanobiosci. 7(4), 257–266 (2008)

    Article  Google Scholar 

  90. Tan, Y., Sun, D., Huang, W., Cheng, S.H.: Characterizing mechanical properties of biological cells by microinjection. IEEE Trans. Nanobiosci. 9(3), 171–180 (2010)

    Article  Google Scholar 

  91. Tanikawa, T., Arai, T.: Development of a micro-manipulation system having a two-fingered micro-hand. IEEE Trans. Rob. Autom. 15(1), 152–162 (1999)

    Article  Google Scholar 

  92. Tortonese, M., Yamada, H., Barrett, R., Quate, C.: Atomic force microscopy using a piezoresistive cantilever. In: Proceedings of the 1991 International Conference on Solid-State Sensors and Actuators (TRANSDUCERS’91), pp. 448–451 (1991)

    Google Scholar 

  93. Tran, N.D., Liu, X., Yan, Z., Abbote, D., Jiang, Q., Kmiec, E.B., Sigmund, C.D., Engelhardt, J.F.: Efficiency of chimeraplast gene targeting by direct nuclear injection using a GFP recovery assay. Mol. Ther. 7(2), 248–253 (2003)

    Article  Google Scholar 

  94. Ujihara, Y., Nakamura, M., Miyazaki, H., Wada, S.: Proposed spring network cell model based on a minimum energy concept. Ann. Biomed. Eng. 38(4), 1530–1538 (2010)

    Article  Google Scholar 

  95. Wall, R.J.: Pronuclear microinjection. Cloning Stem Cells 3(4), 209–220 (2001)

    Article  Google Scholar 

  96. Walter, W., Stein, U.: Viral vectors for gene transfer a review of their use in the treatment of human disease. Drugs 60, 249–71 (2000)

    Article  Google Scholar 

  97. Wan, H.I., DiAntonio, A., Fetter, R.D., Bergstrom, K., Strauss, R., Goodman, C.S.: Highwire regulates synaptic growth in Drosophila. Neuron 26(2), 313–329 (2000)

    Article  Google Scholar 

  98. Wang, G., Xu, Q.: Design and precision position/force control of a piezo-driven microinjection system. IEEE/ASME Trans. Mechatron. 22(4), 1744–1754 (2017)

    Article  Google Scholar 

  99. Wang, W., Liu, X., Gelinas, D., Ciruna, B., Sun, Y.: A fully automated robotic system for microinjection of zebrafish embryos. PloS One 2(9), e862 (2007)

    Article  Google Scholar 

  100. Wei, Y., Xu, Q.: An overview of micro-force sensing techniques. Sens. Actuators A Phys. 234, 359–374 (2015)

    Article  Google Scholar 

  101. Wei, Y., Xu, Q.: Design of a PVDF-MFC force sensor for robot-assisted single cell microinjection. IEEE Sens. J. 17(13), 3975–3982 (2017)

    Article  Google Scholar 

  102. Wejinya, U.C., Shen, Y., Xi, N., Salem, F.: Force measurement of embryonic system using in situ PVDF piezoelectric sensor. In: Proceedings of the 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS’06), vol. 1, pp. 108–112 (2006)

    Google Scholar 

  103. Wenming, X., Hui, Z.: Bio-manipulation probe integration with micro-force sensor. In: Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS 2008), pp. 393–396 (2008)

    Google Scholar 

  104. Westerfield, M.: The zebrafish book: a guide for the laboratory use of zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html (2000)

  105. Wiens, G.J., Roman, G.A.: A mechanism approach for enhancing the dynamic range and linearity of MEMS optical force sensing. Signal Measurement and Estimation Techniques for Micro and Nanotechnology, p. 193 (2011)

    Google Scholar 

  106. Wright, W.H., Sonek, G., Tadir, Y., Berns, M.W.: Laser trapping in cell biology. IEEE J. Quant. Electron. 26(12), 2148–2157 (1990)

    Article  Google Scholar 

  107. Xie, Y., Sun, D., Liu, C.: Penetration force measurement and control in robotic cell microinjection. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4701–4706 (2009)

    Google Scholar 

  108. Xie, Y., Sun, D., Liu, C., Tse, H.Y., Cheng, S.H.: A force control approach to a robot-assisted cell microinjection system. Int. J. Rob. Res. 29(9), 1222–1232 (2010)

    Article  Google Scholar 

  109. Xie, Y., Sun, D., Tse, H.Y.G., Liu, C., Cheng, S.H.: Force sensing and manipulation strategy in robot-assisted microinjection on zebrafish embryos. IEEE/ASME Trans. Mechatron. 16(6), 1002–1010 (2011)

    Article  Google Scholar 

  110. Xu, Q.: Design and development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans. Autom. Sci. Eng. (2015)

    Google Scholar 

  111. Xu, Q., Tan, K.K.: Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems. Springer, Berlin (2015)

    MATH  Google Scholar 

  112. Yamagata, Y., Higuchi, T.: A micropositioning device for precision automatic assembly using impact force of piezoelectric elements. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 666–671 (1995)

    Google Scholar 

  113. Yu, S., Nelson, B.J.: Microrobotic cell injection. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 620–625 (2001)

    Google Scholar 

  114. Yunlei, Z., Shuang, L., Chongjun, Y., Chong, L., Yu, X.: Design of a microforce sensor based on fixed-simply supported beam: towards realtime cell microinjection. In: Proceeedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1080–1084 (2015)

    Google Scholar 

  115. Zappe, S., Fish, M., Scott, M.P., Solgaard, O.: Automated mems-based drosophila embryo injection system for high-throughput rnai screens. Lab Chip 6(8), 1012–1019 (2006)

    Article  Google Scholar 

  116. Zeng, Y., Yip, A.K., Teo, S.K., Chiam, K.H.: A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation. Biomech. Model. Mechanobiol. 11(1–2), 49–59 (2012)

    Article  Google Scholar 

  117. Zhang, W., Sobolevski, A., Li, B., Rao, Y., Liu, X.: An automated force-controlled robotic micromanipulation system for mechanotransduction studies of drosophila larvae. IEEE Trans. Autom. Sci. Eng. 13(2), 789–797 (2016)

    Article  Google Scholar 

  118. Zhang, X., Scott, M.P., Quate, C.F., Solgaard, O.: Microoptical characterization of piezoelectric vibratory microinjections in drosophila embryos for genome-wide RNAi screen. J. Microelectromech. Syst. 15(2), 277–286 (2006)

    Article  Google Scholar 

  119. Zhang, X., Zappe, S., Bernstein, R., Sahin, O., Chen, C.C., Fish, M., Scott, M., Solgaard, O.: Integrated optical diffractive micrograting-based injection force sensor. In: Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), vol. 2, pp. 1051–1054 (2003)

    Google Scholar 

  120. Zhang, X., Zappe, S., Bernstein, R., Sahin, O., Chen, C.C., Fish, M., Scott, M., Solgaard, O.: Micromachined silicon force sensor based on diffractive optical encoders for characterization of microinjection. Sens. Actuators A Phys. 114(2), 197–203 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Q. (2018). Review of Microinjection Systems. In: Micromachines for Biological Micromanipulation. Springer, Cham. https://doi.org/10.1007/978-3-319-74621-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74621-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74620-3

  • Online ISBN: 978-3-319-74621-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics