Skip to main content

Toward a Smart City of Interdependent Critical Infrastructure Networks

  • Chapter
  • First Online:
Sustainable Interdependent Networks

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 145))

Abstract

A smart city requires synergistic interaction between several functionally interdependent networks like energy, transportation, water, oil, gas, and emergency services to provide on-demand, reliable services to prosumers. The sustainability of smart city can be guaranteed only through ubiquitous communication and decentralized information exchange between optimization and computational models for the operation, visibility, and control of each constituent network. With the city spanning different societies and jurisdictions, the models must also account for challenges like interoperability, security, latency, resiliency, policymaking, and social behavior. Solutions in the current literature address these challenges in each network exclusively, but the interdependency between them is not properly emphasized. The chapter addresses this gap in research by considering smart city networks with special emphasis on energy, communication, data analytics, and transportation. It introduces each of these networks, identifies state of the art in them and explores open challenges for future research. As its key contribution to the literature, the chapter brings out the interdependencies between these networks through realistic examples and scenarios, identifying the critical need to design, develop, and implement solutions that value such dependencies. Thus, the chapter aims to serve as a starting point for researchers entering the domain of smart city and is interested in conducting cross-functional research across its different interdependent networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DOE, The smart grid: An introduction. A U.S. Department of Energy (DOE) Technical Report (2009)

    Google Scholar 

  2. A. Anzalchi, A. Sarwat, A survey on security assessment of metering infrastructure in smart grid systems. SoutheastCon 2015, 1–4 (2015)

    Google Scholar 

  3. S. M. Amin, Electricity infrastructure security: toward reliable, resilient and secure cyber-physical power and energy systems, in IEEE PES General Meeting, pp. 1–5, July 2010

    Google Scholar 

  4. L. Wei, A.H. Moghadasi, A Sundararajan, A.I. Sarwat, Defending mechanisms for protecting power systems against intelligent attacks, in System of Systems Engineering Conference (SoSE), 2015 10th, pp. 12–17, May 2015

    Google Scholar 

  5. A. Sanjab, W. Saad, I. Guvenc, A. Sarwat, S. Biswas, Smart grid security: threats, challenges, and solutions. [cs.IT], June 2016. arXiv:1606.06992

  6. A. Sundararajan, A. Pons, A.I. Sarwat, A generic framework for eeg-based biometric authentication, in 12th International Conference on Information Technology-New Generations, pp. 139–144, Apr 2015

    Google Scholar 

  7. B. McMillin, Complexities of information security in cyber-physical power systems, in IEEE/PES Power Systems Conference and Exposition, Mar 2009

    Google Scholar 

  8. K. Booroojeni, M.H. Amini, A. Nejadpak, T. Dragicevic, S.S. Iyengar, F. Blaabjerg, A novel cloud-based platform for implementation of oblivious power routing for clusters of microgrids. IEEE Access 607–619 (2016)

    Google Scholar 

  9. K.G. Booroojeni, M.H. Amini, S.S. Iyengar, Smart Grids: Security and Privacy Issues (Springer International Publishing, 2017)

    Google Scholar 

  10. A.I. Sarwat, M.H. Amini, A. Domijan, A. Damnjanovic, F. Kaleem, Weather-based interruption prediction in the smart grid utilizing chronological data. J. Mod. Power Syst. Clean Energy 607–619 (2015)

    Google Scholar 

  11. A.I. Sarwat, A. Domijan, M.H. Amini, A. Damnjanovic, A. Moghadasi, Smart grid reliability assessment utilizing boolean driven markov process and variable weather conditions, in North American Power Symposium, Oct 2015

    Google Scholar 

  12. J. Mandic-Lukic, B. Milinkovic, N. Simic, Communication solutions for smart grids, smart cities and smart buildings, in Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), pp. 1–7 (2016)

    Google Scholar 

  13. J. Jin, J. Gubbi, S. Marusic, M. Palaniswami, An information framework for creating a smart city through internet of things. IEEE Internet Things J. 1, 112–121 (2014)

    Article  Google Scholar 

  14. I. Parvez, M. Jamei, A. Sundararajan, A.I. Sarwat, Rss based loop-free compass routing protocol for data communication in advanced metering infrastructure (ami) of smart grid, in 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG) (IEEE, 2014) pp. 1–6

    Google Scholar 

  15. I. Parvez, Data Transmission in Quantized Consensus. Ph.D. Thesis, University of North Texas, 2013

    Google Scholar 

  16. I. Parvez, N. Islam, N. Rupasinghe, A.I. Sarwat, Gven, Laa-based lte and zigbee coexistence for unlicensed-band smart grid communications, in SoutheastCon 2016, pp. 1–6 (2016)

    Google Scholar 

  17. M. Sriyananda, I. Parvez, I. Güvene, M. Bennis, A.I. Sarwat, Multi-armed bandit for lte-u and wifi coexistence in unlicensed bands, in 2016 IEEE Wireless Communications and Networking Conference (WCNC) (IEEE, 2016) pp. 1–6

    Google Scholar 

  18. I. Parvez, M. Sriyananda, İ. Güvenç, M. Bennis, A. Sarwat, Cbrs spectrum sharing between lte-u and wifi: a multiarmed bandit approach. Mob. Inf. Syst. 2016 (2016)

    Google Scholar 

  19. I. Parvez, T. Khan, A. Sarwat, Laa-lte and wifi based smart grid metering infrastructure in 3.5 ghz band, in IEEE R10HTC 2017

    Google Scholar 

  20. R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, A. Ghosh, Nb-iot system for m2m communication, in 2016 IEEE Wireless Communications and Networking Conference, pp. 1–5, Apr 2016

    Google Scholar 

  21. I. Parvez, N. Chotikorn, A.I. Sarwat, Average quantized consensus building by gossip algorithm using 16 bit quantization and efficient data transfer method, in International conference on Intelligent Systems, Data Mining and Information Technology (ICIDIT), pp. 1–5

    Google Scholar 

  22. S. Bhattarai, J.M.J. Park, B. Gao, K. Bian, W. Lehr, An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research, IEEE Transactions on Cognitive Communications and Networking, June 2016

    Google Scholar 

  23. M.G.S. Sriyananda, I. Parvez, I. Güvene, M. Bennis, A.I. Sarwat, Multi-armed bandit for lte-u and wifi coexistence in unlicensed bands, in 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6 (2016)

    Google Scholar 

  24. I. Parvez, A. Sarwat, Frequency band for han and nan communication in smart grid, in 2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG) (IEEE, 2014)

    Google Scholar 

  25. I. Parvez, A. Islam, F. Kaleem, A key management-based two-level encryption method for ami, in 2014 IEEE PES General Meeting—Conference & Exposition, pp. 1–5 (IEEE, 2014)

    Google Scholar 

  26. I. Parvez, A.I. Sarwat, L. Wei, A. Sundararajan, Securing metering infrastructure of smart grid: a machine learning and localization based key management approach. Energies 9(9), 691 (2016)

    Article  Google Scholar 

  27. OpenFog, Openfog reference architecture for fog computing, OpenFog Consortium Architecture Working Group (2017)

    Google Scholar 

  28. F.Y. Okay, S. Ozdemir, A fog computing based smart grid model, in In Proceedings of the International Symposium on Networks, Computers and Communications (ISNCC16) (2016)

    Google Scholar 

  29. C.C. Byers, P. Wetterwald, Fog computing distributing data and intelligence for resiliency and scale necessary for iot the internet of things, in ACM Symposium on Ubiquity (2015)

    Google Scholar 

  30. D. Locke, Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM developerWorks Tech. Libr. (2010)

    Google Scholar 

  31. IEEE, Ieee standard for intelligent electronic devices cyber security capabilities. IEEE Power Energy Soc. (2013)

    Google Scholar 

  32. IEEE, IEEE standard cybersecurity requirements for substation automation, protection, and control systems. IEEE Power Energy Soc. (2014)

    Google Scholar 

  33. IEEE, IEEE trial-use standard for a cryptographic protocol for cyber security for substation serial links. IEEE Power Energy Soc. (2011)

    Google Scholar 

  34. S.R. Firouzi, H. Hooshyar, F. Mahmood, L. Vanfretti, An iec 61850-90-5 gateway for ieee c37.118.2 synchrophasor data transfer, NASPI-ISGAN International Synchrophasor Symposium (2016)

    Google Scholar 

  35. H. Mehta, Will the current set of standards assure measurement subsystem interoperability? in NASPI PSTT Meeting (2011)

    Google Scholar 

  36. A. Johnson, Standards associated with synchrophasors, in IEEE PES General Meeting (IEEE)

    Google Scholar 

  37. K. Martin, Synchrophasor standards: support and development, in DOE/OE Transmission Reliability Program (IEEE, 2015)

    Google Scholar 

  38. I. Ali, M.A. Aftab, S.M.S. Hussain, Performance comparison of iec 61850-90-5 and IEEE c37.118.2 based wide area pmu communication networks. J. Mod. Power Syst. Clean Energy (MPCE) (2016)

    Google Scholar 

  39. H. Retty, Evaluation and standardizing of phasor data concentrators, Apr 2013

    Google Scholar 

  40. J. Chai, Y. Liu, J. Guo, L. Wu, D. Zhou, W. Yao, Y. Liu, T. King, J.R. Gracia, M. Patel, Wide-area measurement data analytics using fnet/grideye: a review, in Power Systems Computation Conference (IEEE, 2016)

    Google Scholar 

  41. IEEE, Ieee guide for phasor data concentrator requirements for power system protection, control, and monitoring. IEEE Power Energy Soc. (2013)

    Google Scholar 

  42. A. Poullikkas, G. Kourtis, I. Hadjipaschalis, A review of net metering mechanism for electricity renewable energy sources. Int. J. Energy Environ. 975–1002 (2013)

    Google Scholar 

  43. A. Gholian, H. Mohsenian-Rad, Y. Hua, Optimal industrial load control in smart grid. IEEE Trans. Smart Grid 2305–2316 (2015)

    Google Scholar 

  44. NIST, National institute of standards and technology framework for improving critical infrastructure cybersecurity. NIST, Jan 2017

    Google Scholar 

  45. T. Rueters, Cyberattack that crippled ukrainian power grid was highly coordinated. CBC News 11 (2016)

    Google Scholar 

  46. NERC, North american electric reliability corporation critical infrastructure protection compliance standards, in NERC (2017)

    Google Scholar 

  47. FERC, “Federal energy regulatory commission cyber & grid security,” FERC, 2005

    Google Scholar 

  48. J. Schneider, Sae tir j2954 wireless charging of electric and plug-in hybrid vehicles. SAE Int

    Google Scholar 

  49. J.M. Miller, A. Daga, Elements of wireless power transfer essential to high power charging of heavy duty vehicles. IEEE Trans. Transp. Electr. 1, 26–39 (2015)

    Article  Google Scholar 

  50. R. Bosshard, J.W. Kolar, Multi-objective optimization of 50 kw/85 khz ipt system for public transport. IEEE J. Emerg. Sel. Top. Power Electron. 4, 1370–1382 (2016)

    Article  Google Scholar 

  51. J.H. Kim, B.S. Lee, J.H. Lee, S.H. Lee, C.B. Park, S.M. Jung, S.G. Lee, K.P. Yi, J. Baek, Development of 1-mw inductive power transfer system for a high-speed train. IEEE Trans. Ind. Electron. 62, 6242–6250 (2015)

    Article  Google Scholar 

  52. G.A. Covic, J.T. Boys, Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 1, 28–41 (2013)

    Article  Google Scholar 

  53. C.C. Mi, G. Buja, S.Y. Choi, C.T. Rim, Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans. Ind. Electron. 63, 6533–6545 (2016)

    Article  Google Scholar 

  54. M. Budhia, G.A. Covic, J.T. Boys, Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26, 3096–3108 (2011)

    Article  Google Scholar 

  55. R. Bosshard, U. Iruretagoyena, J.W. Kolar, Comprehensive evaluation of rectangular and double-d coil geometry for 50 kw/85 khz ipt system. IEEE J. Emerg. Sel. Top. Power Electron. 4, 1406–1415 (2016)

    Article  Google Scholar 

  56. M. Moghaddami, A. Anzalchi, A. Moghadasi, A. Sarwat, Pareto optimization of circular power pads for contactless electric vehicle battery charger, in 2016 IEEE Industry Applications Society Annual Meeting, pp. 1–6, Oct 2016

    Google Scholar 

  57. M. Moghaddami, A. Anzalchi, A.I. Sarwat, Finite element based design optimization of magnetic structures for roadway inductive power transfer systems, in 2016 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1–6, June 2016

    Google Scholar 

  58. M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, A. Suzuki, Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system, in 2011 IEEE Energy Conversion Congress and Exposition, pp. 260–266, Sept 2011

    Google Scholar 

  59. M. Budhia, J.T. Boys, G.A. Covic, C.Y. Huang, Development of a single-sided flux magnetic coupler for electric vehicle ipt charging systems. IEEE Trans. Ind. Electron. 60, 318–328 (2013)

    Article  Google Scholar 

  60. G.R. Nagendra, G.A. Covic, J.T. Boys, Sizing of inductive power pads for dynamic charging of evs on ipt highways. IEEE Trans. Transp. Electr. 3, 405–417 (2017)

    Article  Google Scholar 

  61. J. Lin, R. Saunders, K. Schulmeister, P. Söderberg, A. Swerdlow, M. Taki, B. Veyret, G. Ziegelberger, M.H. Repacholi, R. Matthes et al., Icnirp guidelines for limiting exposure to time-varying electric and magnetic fields (1 hz to 100 khz). Health Phys. 99, 818–836 (2010)

    Google Scholar 

  62. M.R. Mozafar, M.H. Moradi, M.H. Amini, A simultaneous approach for optimal allocation of renewable energy sources and electric vehicle charging stations in smart grids based on improved ga-pso algorithm. Sustain. Cities Soc. 32, 627–637 (2017)

    Article  Google Scholar 

  63. M.H. Amini, A. Islam, Allocation of electric vehicles’ parking lots in distribution network. ISGT 2014, 1–5 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that the work for this chapter is supported by the following grants: CNS-1553494 (NSF) and 800006104 (DOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif I. Sarwat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarwat, A.I., Sundararajan, A., Parvez, I., Moghaddami, M., Moghadasi, A. (2018). Toward a Smart City of Interdependent Critical Infrastructure Networks. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks. Studies in Systems, Decision and Control, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-74412-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74412-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74411-7

  • Online ISBN: 978-3-319-74412-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics