Skip to main content

Estimation of Large-Scale Solar Rooftop PV Potential for Smart Grid Integration: A Methodological Review

  • Chapter
  • First Online:
Sustainable Interdependent Networks

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 145))

Abstract

Roof-mounted photovoltaic (PV) panels are currently one of the most promising sources of renewable energy in urban areas. Yet, the optimized use of these rooftop PV systems requires an estimate of the potential supply. This chapter presents a review of the existing methodologies to explore the suitability of different methods to estimate the solar PV potential at regional and national scale. A thorough potential study for solar PV over rooftops requires the estimation of multiple variables, including (1) the horizontal components of solar radiation (global, diffuse, direct, extraterrestrial radiations) at the location of interest, (2) the shadowing effects over rooftops, (3) the rooftop slope and aspect distributions, and the rooftop shape, (4) the solar radiation over the tilted rooftops, and (5) the available rooftop area for PV installation. The goal of the present chapter is to review different methods for solar rooftop PV potential, independently from each other. A comparison is given based on the regional characteristics, the scale of study, the availability of data, and the level of accuracy. The methods include physical and empirical models , geostatistical methods, constant-value methods, sampling methods, geographic information systems (GIS) and light detection and ranging (LiDAR) -based methods, and finally machine learning methods. We present for each of them the main principle and theoretical background, as well as a literature review of the most significant studies that applied the method in various contexts. We also discuss the main advantages and disadvantages of the methods as well as present which methods are more suitable to estimate the above-mentioned variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.A. Abdalla, M. Baghdady, Global and diffuse solar radiation in Doha (Qatar). Solar Wind Technol. 2(3–4), 209–212 (1985)

    Article  Google Scholar 

  2. S. Al-Alawi, H. Al-Hinai, An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renew. Energy 14(1–4), 199–204 (1998)

    Article  Google Scholar 

  3. H. Alsamamra, J.A. Ruiz-Arias, D. Pozo-Vázquez, J. Tovar-Pescador, A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agric. Forest Meteorol. 149(8), 1343–1357 (2009)

    Article  Google Scholar 

  4. M.H. Amini, B. Nabi, M.-R. Haghifam, Load management using multi-agent systems in smart distribution network, in 2013 IEEE Power and Energy Society General Meeting (PES) (IEEE, 2013), pp. 1–5

    Google Scholar 

  5. P. Andersen, Comments on calculations of monthly average insolation on tilted surfaces by SA Klein. Solar Energy 25(3), 287 (1980)

    Article  Google Scholar 

  6. K.H. Anderson, M.H. Coddington, B.D. Kroposki, Assessing technical potential for city PV deployment using NREL’s in my backyard tool, in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 001085–001090

    Google Scholar 

  7. A. Angstrom, On the computation of global radiation from records of sunshine

    Google Scholar 

  8. F. Antonanzas-Torres, R. Urraca, J. Antonanzas, J. Fernandez-Ceniceros, F. Martinez-de Pison, Generation of daily global solar irradiation with support vector machines for regression. Energy Convers. Manag. 96, 277–286 (2015)

    Article  Google Scholar 

  9. D. Assouline, N. Mohajeri, J.-L. Scartezzini, Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Solar Energy 141, 278–296 (2017)

    Article  Google Scholar 

  10. V. Badescu, 3D isotropic approximation for solar diffuse irradiance on tilted surfaces. Renew. Energy 26(2), 221–233 (2002)

    Article  Google Scholar 

  11. M. Benghanem, A. Mellit, Radial Basis Function Network-based prediction of global solar radiation data: application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia. Energy 35(9), 3751–3762 (2010)

    Article  Google Scholar 

  12. R. Benson, M. Paris, J. Sherry, C. Justus, Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements. Solar Energy 32(4), 523–535 (1984)

    Article  Google Scholar 

  13. L. Bergamasco, P. Asinari, Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy). Solar Energy 85(5), 1041–1055 (2011)

    Article  Google Scholar 

  14. L. Bergamasco, P. Asinari, Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: further improvements by ortho-image analysis and application to Turin (Italy). Solar Energy 85(11), 2741–2756 (2011)

    Article  Google Scholar 

  15. A. Bill, N. Mohajeri, J.-L. Scartezzini, 3D model for solar energy potential on buildings from urban LiDAR data. UDMV 2016 - Eurographics Workshop on Urban Data Modelling and Visualisation, Liège, Belgium, December 8, 2016

    Google Scholar 

  16. A. Bocca, L. Bottaccioli, E. Chiavazzo, M. Fasano, A. Macii, P. Asinari, Estimating photovoltaic energy potential from a minimal set of randomly sampled data. Renew. Energy 97, 457–467 (2016)

    Article  Google Scholar 

  17. K.G. Boroojeni, M.H. Amini, A. Nejadpak, S. Iyengar, B. Hoseinzadeh, C.L. Bak, A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources, in 2016 IEEE International Conference on Electro Information Technology (EIT) (IEEE, 2016), pp. 0510–0515

    Google Scholar 

  18. M.B. Boz, K. Calvert, J.R. Brownson, An automated model for rooftop PV systems assessment in ArcGIS using LIDAR. AIMS Energy 3(3), 401–420 (2015)

    Article  Google Scholar 

  19. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  20. L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-probability Series (Taylor & Francis, 1984)

    Google Scholar 

  21. M.C. Brito, N. Gomes, T. Santos, J.A. Tenedório, Photovoltaic potential in a Lisbon suburb using LiDAR data. Solar Energy 86(1), 283–288 (2012)

    Article  Google Scholar 

  22. J. Bugler, The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation. Solar Energy 19(5), 477–491 (1977)

    Article  Google Scholar 

  23. C.J. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  24. C. Carneiro, E. Morello, G. Desthieux, Assessment of solar irradiance on the urban fabric for the production of renewable energy using LIDAR data and image processing techniques, in Advances in GIScience (Springer, 2009), pp. 83–112

    Google Scholar 

  25. M. Chaudhari, L. Frantzis, T.E. Hoff, PV Grid Connected Market Potential Under a Cost Breakthrough Scenario, Retrieved on 16 September 2010 (Navigant Consulting, Inc., 2004)

    Google Scholar 

  26. Y. Chauvin, D.E. Rumelhart, Backpropagation: Theory, Architectures, and Applications (Psychology Press, 1995)

    Google Scholar 

  27. J.-L. Chen, G.-S. Li, Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theoret. Appl. Climatol. 115(3–4), 627–638 (2013)

    Google Scholar 

  28. J.-L. Chen, G.-S. Li, B.-B. Xiao, Z.-F. Wen, M.-Q. Lv, C.-D. Chen, Y. Jiang, X.-X. Wang, S.-J. Wu, Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature. Energy Convers. Manag. 89, 318–329 (2015)

    Article  Google Scholar 

  29. J.-L. Chen, H.-B. Liu, W. Wu, D.-T. Xie, Estimation of monthly solar radiation from measured temperatures using support vector machines—a case study. Renew. Energy 36(1), 413–420 (2011)

    Article  Google Scholar 

  30. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  31. V. D’Agostino, A. Zelenka, Supplementing solar radiation network data by co-Kriging with satellite images. Int. J. Climatol. 12(7), 749–761 (1992)

    Article  Google Scholar 

  32. P. Defaix, W. Van Sark, E. Worrell, E. de Visser, Technical potential for photovoltaics on buildings in the EU-27. Solar Energy 86(9), 2644–2653 (2012)

    Article  Google Scholar 

  33. C. Demain, M. Journée, C. Bertrand, Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renew. Energy 50, 710–721 (2013)

    Article  Google Scholar 

  34. P. Denholm, R. Margolis, Supply curves for rooftop solar PV-generated electricity for the United States. 2008

    Google Scholar 

  35. M. Diez-Mediavilla, A. De Miguel, J. Bilbao, Measurement and comparison of diffuse solar irradiance models on inclined surfaces in Valladolid (Spain). Energy Convers. Manag. 46(13), 2075–2092 (2005)

    Article  Google Scholar 

  36. A.S. Dorvlo, J.A. Jervase, A. Al-Lawati, Solar radiation estimation using artificial neural networks. Appl. Energy 71(4), 307–319 (2002)

    Article  Google Scholar 

  37. H. Drucker, C.J. Burges, L. Kaufman, A.J. Smola, V. Vapnik, Support vector regression machines, in Advances in Neural Information Processing Systems (1997), pp. 155–161

    Google Scholar 

  38. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (1980)

    Google Scholar 

  39. A. El-Sebaii, F. Al-Hazmi, A. Al-Ghamdi, S.J. Yaghmour, Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl. Energy 87(2), 568–576 (2010)

    Article  Google Scholar 

  40. C. Ertekin, F. Evrendilek, Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey. Agric. Forest Meteorol. 145(1–2), 36–47 (2007)

    Article  Google Scholar 

  41. D. Fadare, Modelling of solar energy potential in Nigeria using an artificial neural network model. Appl. Energy 86(9), 1410–1422 (2009)

    Article  Google Scholar 

  42. Y. Feng, N. Cui, Q. Zhang, L. Zhao, D. Gong, Comparison of artificial intelligence and empirical models for estimation of daily diffuse solar radiation in North China plain. Int. J. Hydrogen Energy 42(21), 14418–14428 (2017)

    Article  Google Scholar 

  43. L. Frantzis, S. Graham, J. Paidipati, California rooftop photovoltaic (PV) resource assessment and growth potential by county. Navigant Consulting, California Energy Commission PIER Final Project Report CEC-500-2007-048 (2007)

    Google Scholar 

  44. P. Gagnon, R. Margolis, J. Melius, C. Phillips, R. Elmore, Rooftop solar photovoltaic technical potential in the United States: a detailed assessment. Technical report (National Renewable Energy Laboratory (NREL), 2016)

    Google Scholar 

  45. J. Gooding, R. Crook, A.S. Tomlin, Modelling of roof geometries from low-resolution LiDAR data for city-scale solar energy applications using a neighbouring buildings method. Appl. Energy 148, 93–104 (2015)

    Article  Google Scholar 

  46. C. Gueymard, An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Solar Energy 38(5), 367–386 (1987)

    Article  Google Scholar 

  47. M. Gulin, M. Vašak, M. Baotic, Estimation of the global solar irradiance on tilted surfaces, in 17th International Conference on Electrical Drives and Power Electronics (EDPE 2013) (2013), pp. 334–339

    Google Scholar 

  48. M. Gutschner, S. Nowak, D. Ruoss, P. Toggweiler, T. Schoen, Potential for building integrated photovoltaics. IEA-PVPS Task 7 (2002)

    Google Scholar 

  49. H. Hashimoto, R. Nemani, Estimation of spatial variability in humidity, wind, and solar radiation using the random forest algorithm for the conterminous USA, in AGU Fall Meeting Abstracts (2015)

    Google Scholar 

  50. T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, R. Tibshirani, The Elements of Statistical Learning, vol. 2 (Springer, 2009)

    Google Scholar 

  51. J.E. Hay, Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Solar Energy 23(4), 301–307 (1979)

    Article  Google Scholar 

  52. S.S. Haykin, Neural Networks: A Comprehensive Foundation (Tsinghua University Press, 2001)

    Google Scholar 

  53. J. Hofierka, J. Kaňuk, Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy 34(10), 2206–2214 (2009)

    Article  Google Scholar 

  54. T. Hong, M. Lee, C. Koo, K. Jeong, J. Kim, Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using hillshade analysis. Appl. Energy 194, 320–332 (2017)

    Article  Google Scholar 

  55. M.M. Hoogwijk, On the global and regional potential of renewable energy sources. Ph.D. thesis (2004)

    Google Scholar 

  56. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  57. I.A. Ibrahim, T. Khatib, A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers. Manag. 138, 413–425 (2017)

    Article  Google Scholar 

  58. T. Inoue, T. Sasaki, T. Washio, Spatio-temporal Kriging of solar radiation incorporating direction and speed of cloud movementm, in The 26th Annual Conference of the Japanese Society for Artificial Intelligence (2012)

    Google Scholar 

  59. M. Iqbal, An Introduction to Solar Radiation (Elsevier, 2012)

    Google Scholar 

  60. S. Izquierdo, M. Rodrigues, N. Fueyo, A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy 82(10), 929–939 (2008)

    Article  Google Scholar 

  61. A. Jochem, B. Höfle, M. Rutzinger, N. Pfeifer, Automatic roof plane detection and analysis in airborne LIDAR point clouds for solar potential assessment. Sensors 9(7), 5241–5262 (2009)

    Article  Google Scholar 

  62. B. Joshi, B. Hayk, A. Al-Hinai, W.L. Woon, Rooftop detection for planning of solar PV deployment: a case study in Abu Dhabi, in International Workshop on Data Analytics for Renewable Energy Integration (Springer, 2014), pp. 137–149

    Google Scholar 

  63. G.A. Kamali, I. Moradi, A. Khalili, Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran). Theoret. Appl. Climatol. 84(4), 235–241 (2006)

    Article  Google Scholar 

  64. M. Kanevski, V. Timonin, A. Pozdnukhov, Machine Learning for Spatial Environmental Data: Theory, Applications, and Software (CRC Press, 2009)

    Google Scholar 

  65. R. Kassner, W. Koppe, T. Schüttenberg, G. Bareth, Analysis of the solar potential of roofs by using official LIDAR data, in Proceedings of the International Society for Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Congress) (2008), pp. 399–404

    Google Scholar 

  66. T. Khatib, A. Mohamed, M. Mahmoud, K. Sopian, Modeling of daily solar energy on a horizontal surface for five main sites in Malaysia. Int. J. Green Energy 8(8), 795–819 (2011)

    Article  Google Scholar 

  67. S. Klein, Calculation of monthly average insolation on tilted surfaces. Solar Energy 19(4), 325–329 (1977)

    Article  Google Scholar 

  68. T.M. Klucher, Evaluation of models to predict insolation on tilted surfaces. Solar Energy 23(2), 111–114 (1979)

    Article  Google Scholar 

  69. P.S. Koronakis, On the choice of the angle of tilt for south facing solar collectors in the Athens basin area. Solar Energy 36(3), 217–225 (1986)

    Article  Google Scholar 

  70. M. Kratzenberg, H.H. Zürn, P.P. Revheim, H.G. Beyer, Identification and handling of critical irradiance forecast errors using a random forest scheme—a case study for southern Brazil. Energy Procedia 76, 207–215 (2015)

    Article  Google Scholar 

  71. Y. LeCun, Y. Bengio et al., Convolutional networks for images, speech, and time series, in The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)

    Google Scholar 

  72. H. Lehmann, S. Peter, Assessment of Roof and Façade Potentials for Solar Use in Europe (Institute for Sustainable Solutions and Innovations (ISUSI), Aachen, Germany, 2003)

    Google Scholar 

  73. R. Levinson, H. Akbari, M. Pomerantz, S. Gupta, Solar access of residential rooftops in four California cities. Solar Energy 83(12), 2120–2135 (2009)

    Article  Google Scholar 

  74. A. Liaw, M. Wiener, Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  75. B. Liu, R. Jordan, Daily insolation on surfaces tilted towards equator. ASHRAE J. (United States) 10 (1961)

    Google Scholar 

  76. A. Lopez, B. Roberts, D. Heimiller, N. Blair, G. Porro, US renewable energy technical potentials: a GIS-based analysis. Technical report, NREL (2012)

    Google Scholar 

  77. G. Louppe, Understanding random forests: from theory to practice, arXiv:1407.7502 (2014)

  78. P. Loutzenhiser, H. Manz, C. Felsmann, P. Strachan, T. Frank, G. Maxwell, Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Solar Energy 81(2), 254–267 (2007)

    Article  Google Scholar 

  79. N. Lukač, S. Seme, D. Žlaus, G. Štumberger, B. Žalik, Buildings roofs photovoltaic potential assessment based on LiDAR (light detection and ranging) data. Energy 66, 598–609 (2014)

    Article  Google Scholar 

  80. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  81. N. Mohajeri, D. Assouline, B. Guiboud, J.-L. Scartezzini, Does roof shape matter? solar photovoltaic (PV) integration on building roofs, in Proceedings of the International Conference on Sustainable Built Environment (SBE), number EPFL-CONF-220006 (2016)

    Google Scholar 

  82. M. Mohandes, S. Rehman, T. Halawani, Estimation of global solar radiation using artificial neural networks. Renew. Energy 14(1–4), 179–184 (1998)

    Article  Google Scholar 

  83. M. Montavon, J.-L. Scartezzini, R. Compagnon, Comparison of the solar energy utilisation potential of different urban environments, in PLEA 2004 Conference (2004)

    Google Scholar 

  84. A. Moreno, M. Gilabert, B. Martínez, Mapping daily global solar irradiation over Spain: a comparative study of selected approaches. Solar Energy 85(9), 2072–2084 (2011)

    Article  Google Scholar 

  85. T. Muneer, Solar radiation model for Europe. Build. Serv. Eng. Res. Technol. 11(4), 153–163 (1990)

    Article  Google Scholar 

  86. H.T. Nguyen, J.M. Pearce, Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale. Solar Energy 86(5), 1245–1260 (2012)

    Article  Google Scholar 

  87. H.T. Nguyen, J.M. Pearce, Automated quantification of solar photovoltaic potential in cities. Int. Rev. Spat. Plan. Sustain. Dev. 1(1), 49–60 (2013)

    Article  Google Scholar 

  88. H.T. Nguyen, J.M. Pearce, R. Harrap, G. Barber, The application of LiDAR to assessment of rooftop solar photovoltaic deployment potential in a municipal district unit. Sensors 12(4), 4534–4558 (2012)

    Article  Google Scholar 

  89. A.M. Noorian, I. Moradi, G.A. Kamali, Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renew. Energy 33(6), 1406–1412 (2008)

    Article  Google Scholar 

  90. J. Ordóñez, E. Jadraque, J. Alegre, G. Martínez, Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain). Renew. Sustain. Energy Rev. 14(7), 2122–2130 (2010)

    Article  Google Scholar 

  91. J. Paidipati, L. Frantzis, H. Sawyer, A. Kurrasch, Rooftop Photovoltaics Market Penetration Scenarios (Navigant Consulting, Inc., for NREL, 2008)

    Google Scholar 

  92. J. Peng, L. Lu, Investigation on the development potential of rooftop pv system in Hong Kong and its environmental benefits. Renew. Sustain. Energy Rev. 27, 149–162 (2013)

    Article  Google Scholar 

  93. R. Perez, R. Seals, P. Ineichen, R. Stewart, D. Menicucci, A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy 39(3), 221–231 (1987)

    Article  Google Scholar 

  94. I.R. Pillai, R. Banerjee, Methodology for estimation of potential for solar water heating in a target area. Solar Energy 81(2), 162–172 (2007)

    Article  Google Scholar 

  95. Z. Ramedani, M. Omid, A. Keyhani, S. Shamshirband, B. Khoshnevisan, Potential of radial basis function based support vector regression for global solar radiation prediction. Renew. Sustain. Energy Rev. 39, 1005–1011 (2014)

    Article  Google Scholar 

  96. M.A. Ramli, S. Twaha, Y.A. Al-Turki, Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study. Energy Convers. Manag. 105, 442–452 (2015)

    Article  Google Scholar 

  97. C. Ratti, N. Baker, K. Steemers, Energy consumption and urban texture. Energy Build. 37(7), 762–776 (2005)

    Article  Google Scholar 

  98. P. Redweik, C. Catita, M. Brito, Solar energy potential on roofs and facades in an urban landscape. Solar Energy 97, 332–341 (2013)

    Article  Google Scholar 

  99. S. Rehman, S.G. Ghori, Spatial estimation of global solar radiation using geostatistics. Renew. Energy 21(3–4), 583–605 (2000)

    Article  Google Scholar 

  100. D. Reindl, W. Beckman, J. Duffie, Evaluation of hourly tilted surface radiation models. Solar Energy 45(1), 9–17 (1990)

    Article  Google Scholar 

  101. L.R. Rodríguez, E. Duminil, J.S. Ramos, U. Eicker, Assessment of the photovoltaic potential at urban level based on 3D city models: a case study and new methodological approach. Solar Energy 146, 264–275 (2017)

    Article  Google Scholar 

  102. Z. Scen, E. Tan, Simple models of solar radiation data for northwestern part of Turkey. Energy Convers. Manag. 42(5), 587–598 (2001)

    Article  Google Scholar 

  103. J. Schallenberg-Rodríguez, Photovoltaic techno-economical potential on roofs in regions and islands: the case of the Canary Islands. Methodological review and methodology proposal. Renew. Sustain. Energy Rev. 20, 219–239 (2013)

    Article  Google Scholar 

  104. A. Skartveit, J.A. Olseth, Modelling slope irradiance at high latitudes. Solar Energy 36(4), 333–344 (1986)

    Article  Google Scholar 

  105. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  106. A. Sözen, E. Arcaklioǧlu, M. Özalp, E. Kanit, Use of artificial neural networks for mapping of solar potential in Turkey. Appl. Energy 77(3), 273–286 (2004)

    Article  Google Scholar 

  107. C. Spitters, H. Toussaint, J. Goudriaan, Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric. Forest Meteorol. 38(1–3), 217–229 (1986)

    Article  Google Scholar 

  108. M. Stone, Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol.) 111–147 (1974)

    Google Scholar 

  109. H. Sun, D. Gui, B. Yan, Y. Liu, W. Liao, Y. Zhu, C. Lu, N. Zhao, Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Convers. Manag. 119, 121–129 (2016)

    Article  Google Scholar 

  110. M. Šúri, J. Hofierka, A new GIS-based solar radiation model and its application to photovoltaic assessments. Trans. GIS 8(2), 175–190 (2004)

    Article  Google Scholar 

  111. R.C. Temps, K. Coulson, Solar radiation incident upon slopes of different orientations. Solar Energy 19(2), 179–184 (1977)

    Article  Google Scholar 

  112. A. Tereci, D. Schneider, D. Kesten, A. Strzalka, U. Eicker, Energy saving potential and economical analysis of solar systems in the urban quarter Scharnhauser Park, in ISES Solar World Congress 2009, 11–14 Oct 2009, Johannesburg, South Africa (2009)

    Google Scholar 

  113. Y. Tian, R. Davies-Colley, P. Gong, B. Thorrold, Estimating solar radiation on slopes of arbitrary aspect. Agric. Forest Meteorol. 109(1), 67–74 (2001)

    Article  Google Scholar 

  114. S. Topçu, S. Dilmaç, Z. Aslan, Study of hourly solar radiation data in Istanbul. Renew. Energy 6(2), 171–174 (1995)

    Article  Google Scholar 

  115. A.J.M. van Wijk, J.P. Coelingh, Wind Power Potential in the OECD Countries (Department of Science, Technology and Society, Utrecht University, 1993)

    Google Scholar 

  116. V. Vapnik, The Nature of Statistical Learning Theory (Springer Science & Business Media, 2000)

    Google Scholar 

  117. R. Vardimon, Assessment of the potential for distributed photovoltaic electricity production in Israel. Renew. Energy 36(2), 591–594 (2011)

    Article  Google Scholar 

  118. C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, A. Fouilloy, Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  119. R. Webster, M. Oliver, Geostatistics for Environmental Scientists (2001)

    Google Scholar 

  120. L. Wiginton, H.T. Nguyen, J.M. Pearce, Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput. Environ. Urban Syst. 34(4), 345–357 (2010)

    Article  Google Scholar 

  121. C.J. Willmott, On the climatic optimization of the tilt and azimuth of flat-plate solar collectors. Solar Energy 28(3), 205–216 (1982)

    Article  MathSciNet  Google Scholar 

  122. C.J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  123. W.L. Woon, Z. Aung, O. Kramer, S. Madnick, in Data Analysis for Renewable Energy Integration: 4th ECML PKDD Workshop, DARE 2016, Riva del Garda, Italy, 23 Sept 2016, Revised Selected Papers, vol. 10097 (Springer, 2017)

    Google Scholar 

  124. R. Yacef, M. Benghanem, A. Mellit, Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renew. Energy 48, 146–154 (2012)

    Article  Google Scholar 

  125. A.K. Yadav, S. Chandel, Solar radiation prediction using Artificial Neural Network techniques: a review. Renew. Sustain. Energy Rev. 33, 772–781 (2014)

    Article  Google Scholar 

  126. W. Yao, Z. Li, Y. Lu, F. Jiang, C. Li, New models for separating hourly diffuse and direct components of global solar radiation, in Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning (Springer, 2014), pp. 653–663

    Google Scholar 

  127. J.K. Yohanna, I.N. Itodo, V.I. Umogbai, A model for determining the global solar radiation for Makurdi, Nigeria. Renew. Energy 36(7), 1989–1992 (2011)

    Article  Google Scholar 

  128. C.-D. Yue, S.-S. Wang, GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 34(6), 730–742 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financed partly by the Commission for Technology and Innovation (CTI) within the SCCER Future Energy Efficient Buildings and Districts, FEEB&D (CTI.2014.0119) and partly by Swiss National Science Foundation under Mobility Fellowship P300P2 174514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Assouline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assouline, D., Mohajeri, N., Scartezzini, JL. (2018). Estimation of Large-Scale Solar Rooftop PV Potential for Smart Grid Integration: A Methodological Review. In: Amini, M., Boroojeni, K., Iyengar, S., Pardalos, P., Blaabjerg, F., Madni, A. (eds) Sustainable Interdependent Networks. Studies in Systems, Decision and Control, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-74412-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74412-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74411-7

  • Online ISBN: 978-3-319-74412-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics