Skip to main content

Joint Multimodal Segmentation of Clinical CT and MR from Hip Arthroplasty Patients

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017)

Abstract

Magnetic resonance imaging (MRI) is routinely employed to assess muscular response and presence of inflammatory reactions in patients treated with metal-on-metal hip arthroplasty, driving the decision for revision surgery. However, MRI is lacking contrast for bony structures and as a result orthopaedic surgical planning is mostly performed on computed tomography images. In this paper, we combine the complementary information of both modalities into a novel framework for the joint segmentation of healthy and pathological musculoskeletal structures as well as implants on all images. Our processing pipeline is fully automated and was designed to handle the highly anisotropic resolution of clinical MR images by means of super resolution reconstruction. The accuracy of the intra-subject multimodal registration was improved by employing a non-linear registration algorithm with hard constraints on the deformation of bony structures, while a multi-atlas segmentation propagation approach provided robustness to the large shape variability in the population. The suggested framework was evaluated in a leave-one-out cross-validation study on 20 hip sides. The proposed pipeline has potential for the extraction of clinically relevant imaging biomarkers for implant failure detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg.

  2. 2.

    http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg.

  3. 3.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

References

  1. UK National Joint Registry: 13th Annual Report (December 2015) (2016)

    Google Scholar 

  2. Berber, R., Khoo, M., Cook, E., Guppy, A., Hua, J., Miles, J., Carrington, R., Skinner, J., Hart, A.: Muscle atrophy and metal-on-metal hip implants: a serial MRI study of 74 hips. Acta Orthop. 86(3), 351–357 (2015)

    Article  Google Scholar 

  3. MHRA of the Department of Health: Medical Device Alert. MHRA Database, pp. 1–7 (2012). http://www.mhra.gov.uk

  4. Bogner, E., Sofka, C.: CT evaluation of total hip arthroplasty complication: Dissociation of acetabular component. HSS J. 3(1), 112–114 (2007)

    Article  Google Scholar 

  5. Pedoia, V., Majumdar, S., Link, T.: Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn. Reson. Mater. Phy. 29(2), 207–221 (2016)

    Article  Google Scholar 

  6. Seim, H., Kainmüller, D., Heller, M., Lamecker, H., Zachow, S., Hege, H.C.: Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: Proceedings of the 1st Eurographics Conference on Visual Computing for Biomedicine - EG VCBM 2008, pp. 93–100 (2008)

    Google Scholar 

  7. Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_24

    Chapter  Google Scholar 

  8. Pettersson, J., Knutsson, H., Borga, M.: Automatic hip bone segmentation using non-rigid registration. In: Proceedings of the 18th International Conference on Pattern Recognition - ICPR 2006, vol. 3, pp. 946–949. IEEE (2006)

    Google Scholar 

  9. Chu, C., Chen, C., Liu, L., Zheng, G.: FACTS: fully automatic CT segmentation of a hip joint. Ann. Biomed. Eng. 43(5), 1247–1259 (2015)

    Article  Google Scholar 

  10. Prescott, J., Best, T., Swanson, M., Haq, F., Jackson, R., Gurcan, M.: Anatomically anchored template-based level set segmentation: application to quadriceps muscles in MR images from the osteoarthritis initiative. J. Digit. Imaging 24(1), 28–43 (2011)

    Article  Google Scholar 

  11. Ahmad, E., Yap, M., Degens, H., McPhee, J.: Atlas-registration based image segmentation of MRI human thigh muscles in 3D space. In: Mello-Thoms, C.R., Kupinski, M. (eds.) Proceedings of the SPIE Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment, vol. 9037, p. 90371L. SPIE (2014)

    Google Scholar 

  12. Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010)

    Article  Google Scholar 

  13. Klemt, C., Modat, M., Pichat, J., Cardoso, M., Henckel, J., Hart, A., Ourselin, S.: Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty. In: Ourselin, S., Styner, M. (eds.) Proceedings of the SPIE Medical Imaging 2015: Image Processing, vol. 9413, p. 94131M. SPIE (2015)

    Google Scholar 

  14. Castro-Mateos, I., Pozo, J., Lazary, A., Frangi, A.: Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations. In: Gimi, B., Krol, A. (eds.) Proceedings of the SPIE Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 9788, p. 97881U. SPIE (2016)

    Google Scholar 

  15. Sabah, S., Mitchell, A., Henckel, J., Sandison, A., Skinner, J., Hart, A.: Magnetic resonance imaging findings in painful metal-on-metal hips: a prospective study. J. Arthroplasty 26(1), 71–76 (2011)

    Article  Google Scholar 

  16. Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., Ghosh, S.: Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front. Neuroinf. 5, 13 (2011)

    Article  Google Scholar 

  17. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  18. Ebner, M., Chouhan, M., Patel, P.A., Atkinson, D., Amin, Z., Read, S., Punwani, S., Taylor, S., Vercauteren, T., Ourselin, S.: Point-spread-function-aware slice-to-volume registration: application to upper abdominal MRI super-resolution. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_1

    Chapter  Google Scholar 

  19. Modat, M., Cash, D., Daga, P., Winston, G., Duncan, J., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014)

    Article  Google Scholar 

  20. Haber, E., Heldmann, S., Modersitzki, J.: A computational framework for image-based constrained registration. Linear Algebra Appl. 431(3–4), 459–470 (2009)

    Article  MathSciNet  Google Scholar 

  21. Ashburner, J., Ridgway, G.: Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, 197 (2013)

    Article  Google Scholar 

  22. Modat, M., Daga, P., Cardoso, M., Ourselin, S., Ridgway, G., Ashburner, J.: Parametric non-rigid registration using a stationary velocity field. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis - MMBIA 2012, pp. 145–150 (2012)

    Google Scholar 

  23. Staring, M., Klein, S., Pluim, J.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)

    Article  Google Scholar 

  24. Cardoso, J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., Fox, N., Ourselin, S.: STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med. Image Anal. 17(6), 671–684 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging [EP/L016478/1], the Royal National Orthopaedic Hospital NHS Trust, the Department of Healths NIHR-funded Biomedical Research Centre at University College London Hospitals and Innovative Engineering for Health award by the Wellcome Trust [WT101957] and EPSRC [NS/A000027/1], and by Wellcome/EPSRC [203145Z/16/Z].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bianca Maria Ranzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ranzini, M.B.M. et al. (2018). Joint Multimodal Segmentation of Clinical CT and MR from Hip Arthroplasty Patients. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74113-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74112-3

  • Online ISBN: 978-3-319-74113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics